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Abstract: Lightning flash rate parameterizations based on polarimetric and multi-Doppler radar
inferred microphysical (e.g., graupel volume, graupel mass, 35 dBZ volume) and kinematic (e.g.,
updraft volume, maximum updraft velocity) parameters have important applications in atmospheric
science. Although past studies have established relations between flash rate and storm parameters,
their expected performance in a variety of storm and flash rate conditions is uncertain due to sample
limitations. Radar network and lightning mapping array observations over Alabama of a large
and diverse sample of 33 storms are input to hydrometeor identification, vertical velocity retrieval
and flash rate algorithms to develop and test flash rate relations. When applied to this sample,
prior flash rate linear relations result in larger errors overall, including often much larger bias (both
over- and under-estimation) and root mean square errors compared to the new linear relations.
At low flash rates, the new flash rate relations based on kinematic parameters have larger errors
compared to those based on microphysical ones. Sensitivity of error to the functional form (e.g., zero
or non-zero intercept) is also tested. When considering all factors (e.g., low errors including at low
flash rate, consistency with past linear relations, and insensitivity to functional form), the flash rate
parameterization based on graupel volume has the best overall performance.

Keywords: lightning flash rate parameterization; polarimetric radar; Doppler radar; thunderstorm

1. Introduction

Diagnosis and short-term prediction of thunderstorm impacts using observations and numerical
models remain important challenges in a broad array of research disciplines in the atmospheric sciences,
including severe local storms, atmospheric electricity, atmospheric chemistry and their intersection [1–4].
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Improvements in storm impact assessment and nowcasting require a better understanding of underlying
dynamical and physical processes and the development of new technologies and approaches. For
example, observational and modeling studies have shown that storm electrification and lightning
production are closely tied to convective microphysical and kinematic processes in the mixed-phase
region of thunderstorms [5–15]. In particular, a vigorous convective updraft promotes particle-scale
charging during rebounding collisions between graupel and ice crystals in the presence of super-cooled
liquid cloud water [16–19] and storm-scale separation of the differentially charged ice, allowing for
the development of strong electric fields and lightning. With this physical understanding, observed
lightning properties, such as total (i.e., intracloud + cloud-to-ground; throughout the manuscript,
whether stated explicitly or not, flash rates are based on total lightning.) flash rates, have been
used as proxy metrics of intensity in weather and climate studies of deep convective storms on
regional-to-global scales [20–25] and to inform operational forecasters regarding the potential for
severe convective weather and aviation hazards associated with thunderstorms such as turbulence
and icing [2,26–34]. These severe weather and climate applications of lightning have been facilitated
by the ready availability of a wide variety of ground-based and space-based lightning location systems
on the mesoscale to global scale [35], including the next-generation series of Geostationary Operational
Environmental Satellite (GOES-R) carrying the Geostationary Lightning Mapper (GLM) [36].

Lightning also has the potential for direct impacts as it is a hazard for personnel, infrastructure,
aviation and spaceport operations [37–40]. A direct impact of thunderstorms on atmospheric chemistry
and climate is the lightning production and vertical transport of nitrogen oxides (e.g., NO + NO2 =

NOX) to the upper troposphere, where a net increase can lead to net production of ozone, which is
a powerful greenhouse gas [1,4,41]. A better understanding of the relationships between lightning
and convective cloud microphysics and kinematics has the potential to improve the diagnosis and
forecasting of these direct lightning impacts. For example, the lightning production of nitrogen
oxides (LNOX) has been estimated indirectly in cloud-resolving chemical transport models from
calculated kinematic and microphysical fields [42–45] without the use of existing explicit cloud
electrification and lightning physics, which can be computationally expensive. In contrast to studies
using explicit cloud electrification and lightning flash rate [46,47], the flash rate used for LNOX

production in these chemical transport models is estimated from flash rate parameterization schemes,
which utilize model-predicted storm kinematic and microphysical quantities and are often based on
radar-observed relationships [8–10,13,14,25,48,49]. Similarly, the initiation, cessation, and frequency
of lightning have been forecasted using flash rate parameterizations with model-predicted [50,51] or
radar-observed [52–55] kinematic and microphysical parameters as inputs.

1.1. Background

A careful evaluation of the relationships between total lightning flash rate and radar inferred
kinematic and microphysical parameters, including their variability and error, has the potential
to improve severe storm nowcasting, the forecasting of aviation hazards associated with storms,
climate change studies, lightning hazard forecasting, and lightning impact studies in atmospheric
chemistry and climate. To that end, dual-Doppler and polarimetric radar and lightning observations
of 11 thunderstorms from Alabama and Colorado [13,14] were used to identify useful and regionally
invariant linear relationships between lightning flash rate and several kinematic and microphysical
parameters in the mixed-phase zone (or between about −5 ◦C and −40 ◦C) of thunderstorms, including
graupel (or precipitation ice) mass, ice mass flux product, convective (>5 m s−1) updraft volume and
maximum updraft velocity. These detailed linear relationships were consistent with earlier studies
that also found a high Pearson correlation coefficient between precipitation ice mass and flash rate
using different observational approaches on the mesoscale [9] to global scale [10].

A more recent study [48] using similar dual-Doppler and polarimetric radar observations of 11
different Colorado thunderstorms updated and improved the performance of the linear relationships
between flash rate and storm parameters such as maximum updraft velocity, updraft volume >5 m s−1,
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precipitation ice mass, and ice mass flux product. Based on earlier work [8,25], the more recent study [48]
also explored the relationship between flash rate and two other storm parameters, namely graupel
echo volume and 35 dBZ echo volume in the mixed phase zone. They [48] found that 35 dBZ echo
volume had the lowest error for estimating flash rate, although graupel echo volume and precipitation
ice mass performed nearly as well. A recent modeling study [47] has also concluded that graupel mass
is a good estimator of the flash rate. In contrast to an earlier study [14], the more recent observational
study [48] concluded that linear flash rate parameterizations based on maximum updraft and updraft
volumes (>5 m s−1 and >10 m s−1) in the mixed-phase zone had lower coefficients of determination
and higher error than similar linear relations based on graupel echo volume, precipitation ice mass and
35 dBZ echo volume. Absence of a strong correlation between flash rate and maximum updraft velocity
has also been noted in numerical modeling studies [11,47]. In more recent observational work [48], it
was also determined that some of the linear relations from the earlier observational research [13,14] to
estimate flash rate from precipitation ice mass and updraft volume resulted in large root mean square
error, large negative bias error and frequent unphysical negative flash rates when applied to the new
sample of Colorado storms, in part because of negative y-intercepts in the formulation of the earlier
linear relationships. A recent modeling study [47] also raised the issue of the interpretation, suitability
and performance of having a non-zero y-intercept, including positive and negative, in estimating flash
rate as a dependent variable from a linear relationship based on a microphysical or kinematic storm
parameter as the independent variable. For example, it was determined that the linear relation to
estimate flash rate from convective (>10 m s−1) updraft volume was not satisfactory in their modeling
study [47] because of high false alarms and an over-estimate of the lightning activity (i.e., positive bias
error), likely associated with a large positive y-intercept (i.e., significant flash rates are estimated even
when updraft volume is very small or zero). The optimal form of the linear relationship between flash
rate and storm parameter is clearly an open research question.

1.2. Motivation and Objectives

While prior radar studies have clearly established the potential for and explored the performance
of various lightning flash rate parameterization schemes in a variety of storm types and regions, they
have developed and assessed their flash rate relations on a relatively small sample of storms (e.g., 11
Colorado storms total, including seven with dual-Doppler coverage, in a recent study [48] and 11 total
storms, including five Alabama and six Colorado storms, in an earlier work [13,14]) in large part due
to the difficulty of obtaining high-quality multi-Doppler radar datasets. As discussed in Section 2, this
study takes advantage of six years of consistent dual-Doppler and polarimetric radar storm sampling
in Alabama and adapts the tested methods developed in earlier studies [13,14] to analyze a much
larger sample of 515 radar volumes of 33 independent storms on 17 different days, representing a three-
to five-times increase in utilized radar volumes compared to earlier [13,14] and more recent [48] radar
studies. Although entirely from Alabama, the large radar and lightning datasets in this study include
a wider variety of storm types and intensities that more generally reflect the range of characteristics
of storms in the Alabama region, including not only high-flash-rate severe storms but a significant
number of ordinary (i.e., typical) low-flash-rate storms.

These unique and comprehensive datasets allow this study to extend prior results that were based
on limited samples, explore unresolved issues recently raised and examine new important issues,
such as: (1) the apparent lack of generality of lightning flash rate parameterization schemes based
on a single storm parameter (e.g., mixed-phase graupel volume, graupel mass, 35 dBZ echo volume,
updraft volume and maximum updraft velocity) through direct assessment and comparison of our
results with prior radar studies [13,14,48], (2) the impact of the form of the linear relationship (i.e.,
linear equation with and without a y-intercept) on the error performance of the various flash rate
parameterization schemes derived in this and prior studies, and (3) the expected estimation error
associated with the overall flash rate parameterization schemes derived in this study when applied to
individual storms evaluated as a function of the average storm flash rate. For overall assessment, prior
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radar-based flash rate parameterization studies have either only reported the correlation coefficient (or
coefficient of determination) of the regressed linear relationships [13,14] or also reported the root mean
square error (RMSE) of the relationships over the entire sample [48]. In order to better quantify the
expected performance of these single-parameter flash rate parameterization schemes in individual
storms, particularly across a range of flash rates, this study computes the mean bias error (MBE) and
RMSE of each relationship not only for the entire sample overall but also, for individual storms as a
function of storm averaged flash rate. The distribution of error as a function of storm averaged flash
rate provides understanding of the likely expected error in individual storms and thus has important
potential implications for the use of these relationships in severe and high-impact weather nowcasting,
lightning hazard forecasting and LNOX studies.

The datasets and methods to estimate lightning flash rates and radar inferred kinematic and
microphysical parameters, the methods to derive linear relationships between them and assess their
error are described in Section 2. Results are presented in Section 3. In Section 4, limitations and error
sources of the current and prior related work are discussed and future potential research directions are
identified. The research findings are summarized and conclusions are presented in Section 5.

2. Datasets and Methods

In this section, the lightning and radar instrumentation, datasets and methods are presented. One
of the motivations behind this study was to take advantage of the availability of a large sample of
storms (Table 1) that have been largely processed, analyzed and presented in prior studies using similar
instruments and methods [31,32,56,57]. Although the datasets and methods of this study overlap
with prior studies, their scientific objectives are different. One prior study [56] analyzed a single case
study for the purpose of relating radar and lightning properties. The other studies analyzed either a
few storms in detail [31] or the statistics of a large sample of storms [32] in order to investigate the
kinematic and microphysical controls of lightning jumps, which are a nowcasting signature of storm
intensity and severity. Nearly all of the storms (i.e., 32 of the 33) analyzed herein were first analyzed in
the prior studies [31,32,56,57], highlighting an advantage that the datasets and methods have been
well vetted. These studies built upon even earlier work [13,14], which first developed the techniques
and pioneered the use of the Alabama radar and lightning networks (Figure 1). This study extends the
science of the earlier work [13,14] by utilizing the specific storm datasets and processing methods of
the more recent studies [31,32,56,57].

Table 1. Overview of Alabama storm properties, including date, cell number (#), analysis period
(hh: mm UTC), storm type, severity type, storm life cycle phase(s) represented (G = growth, M =

mature, D = decay), sample size (or number of radar volumes) and maximum lightning flash rate. The
maximum Enhanced Fujita (EF) tornado damage scale is shown as part of the severity type.

Date (Cell #) Period (UTC) Storm Type (Severity) Life Cycle # Samples Max. Flash
Rate (min−1)

20060719 (1) 18:31–19:10 Multicell (wind) G, M 8 37.6
20060719 (2) 20:41–21:19 Multicell (wind) M, D 8 58.1
20060719 (3) 21:05–21:52 Multicell G. M 9 20.5
20070403 (1) 16:20–17:00 Multicell (hail) M, D 11 7.0
20070403 (2) 18:27–19:59 Multicell (hail) G, M 23 45.6
20070403 (3) 18:46–20:29 Multicell (hail) G, M 26 22.4

20070404 02:52–03:22 QLCS (EF1, hail, wind) M 7 76.0
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Table 1. Cont.

Date (Cell #) Period (UTC) Storm Type (Severity) Life Cycle # Samples Max. Flash
Rate (min−1)

20070601 (1) 21:01–21:37 Multicell M, D 9 2.1
20070601 (2) 21:01–21:33 Multicell G, M 8 3.9
20070706 (1) 17:19–19:15 Multicell G, M, D 24 47.2
20070706 (2) 17:19–18:13 Multicell M, D 12 16.8
20070817 (1) 19:58–20:48 Multicell (wind) G, M, D 12 26.5
20070817 (2) 19:20–20:48 Multicell (wind) G, M, D 21 32.6
20070817 (3) 19:33–20:48 Multicell G, M, D 18 25.7
20070817 (4) 22:45–23:32 Multicell G, M, D 9 15.4

20070914 16:44–17:07 Multicell G, M 5 4.3
20080206 10:02–11:19 Supercell (EF4) M 13 101.7

20090410 (1) 17:16–17:48 Supercell (hail) G, M 6 41.2
20090410 (2) 18:17–18:56 Supercell (hail, wind) M, D 9 69.4
20090410 (3) 18:12–18:53 Supercell (hail) G, M 9 35.9
20100121 (1) 21:32–22:28 Low-top supercell (EF0, hail) G, M, D 18 1.9
20100121 (2) 21:29–23:33 Low-top supercell (hail) G, M, D 39 9.3

20100312 14:52–16:08 QLCS (hail, wind) G, M 13 78.0
20101026 (1) 22:04–22:38 Multicell M 7 1.7
20101026 (2) 22:18–23:27 Low-top supercell (EF0) M 16 4.7
20101026 (3) 22:14–23:14 Low-top supercell (EF1) M 12 8.6

20110427 19:55–20:38 Supercell (EF4) M 9 71.8
20120518 22:03–23:59 Multicell G, M, D 28 19.5

20120521 (1) 19:35–20:32 Multicell G, M, D 15 1.1
20120521 (2) 19:35–21:23 Multicell G, M, D 30 5.0

20120611 18:39–21:22 Multicell G, M, D 33 6.6
20120614 (1) 18:31–18:56 Multicell M 8 1.7
20120614 (2) 16:28–18:29 Multicell G, M, D 40 22.9
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Figure 1. Map of the radar and lightning networks centered over Northern Alabama and used in this 
study. The solid red (blue) circle represents the ARMOR (KHTX) radar at KHSV (Hytop, AL, USA). 
The green triangles depict the sensor locations of the NALMA. The black, dashed circles represent the 
ARMOR-KHTX dual-Doppler regions as defined by the 30° beam crossing angle. A distance scale is 
shown in the upper-right and latitude and longitude values are provided along the outside. Adapted 
from [56]. © Copyright [2015] AMS 

For this study, the storm sample includes 515 radar volumes of 33 storms on 17 different days 
(Table 1). The storm sample is diverse, representing a wide variety of storm morphology, intensity, 
severity and flash rate regimes, including 22 multicellular storms (7 severe and 15 non-severe), 9 
supercells, of which 5 were tornadic and 4 were low-topped with low flash rates [32,57], and 2 cells 
within quasi-linear convective systems (QLCS’s). Storm maximum flash rates varied from 1.1 min−1 
to 101.7 min−1. To be included in the sample, the storm needed to pass within the dual-Doppler lobes 
(Figure 1) so that dual-Doppler radar analysis could be conducted to estimate updraft vertical 
velocities during at least the mature phase of the storm, if not also other phases (e.g., growth, decay), 
for at least 5 radar volumes (or for ≥20–25 min). Additional constraints for the inclusion of storms 

Figure 1. Map of the radar and lightning networks centered over Northern Alabama and used in this
study. The solid red (blue) circle represents the ARMOR (KHTX) radar at KHSV (Hytop, AL, USA).
The green triangles depict the sensor locations of the NALMA. The black, dashed circles represent the
ARMOR-KHTX dual-Doppler regions as defined by the 30◦ beam crossing angle. A distance scale is
shown in the upper-right and latitude and longitude values are provided along the outside. Adapted
from [56]. © Copyright [2015] AMS.
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For this study, the storm sample includes 515 radar volumes of 33 storms on 17 different days
(Table 1). The storm sample is diverse, representing a wide variety of storm morphology, intensity,
severity and flash rate regimes, including 22 multicellular storms (7 severe and 15 non-severe), 9
supercells, of which 5 were tornadic and 4 were low-topped with low flash rates [32,57], and 2 cells
within quasi-linear convective systems (QLCS’s). Storm maximum flash rates varied from 1.1 min−1 to
101.7 min−1. To be included in the sample, the storm needed to pass within the dual-Doppler lobes
(Figure 1) so that dual-Doppler radar analysis could be conducted to estimate updraft vertical velocities
during at least the mature phase of the storm, if not also other phases (e.g., growth, decay), for at least
5 radar volumes (or for ≥20–25 min). Additional constraints for the inclusion of storms into the sample
are discussed in the sections on lightning (Section 2.1) and radar (Section 2.2) data and methods below.

2.1. Lightning

Total lightning information is obtained from the North Alabama Lightning Mapping Array
(NALMA) [58,59], which is owned and operated by NASA’s Marshall Space Flight Center (MSFC)
and based on the design by New Mexico Tech [60]. NALMA consists of 11 sensors operating at
Very High Frequency (VHF) between 76 and 82 MHz and is centered on the National Space Science
and Technology Center on the campus of the University of Alabama in Huntsville (UAH) (34.72◦ N,
86.64◦ W; Figure 1). VHF radiation source points are associated with electrical breakdown of lightning
flashes in three dimensions. NALMA sensors sample the peak power of VHF radiation sources in
80 µs windows, providing three-dimensional lightning mapping via a time-of-arrival (TOA) technique.
Typical horizontal and vertical spatial location errors of VHF sources are about 50 m to 500 m within
a 100 km range from the network center [58]. All storms analyzed in this study were within about
100 km of NALMA’s center. VHF sources are combined into corresponding lightning flashes using
a clustering algorithm designed specifically for NALMA [50]. The algorithm requires that all VHF
sources in a flash satisfy a 0.3 s temporal clustering criterion and an azimuth- and range-dependent
spatial separation criterion. To further reduce the impact of noise, only lightning flashes with ≥10 VHF
sources were used [31,32,56,57]. Flashes are associated with a storm if they initiate within the radar
footprint of the identified and tracked storm discussed in Section 2.2.4. Storm average total lightning
flash rates (min−1) are computed by adding the number of associated NALMA flashes during the radar
volume scan time and dividing by the radar volume scan time. As such, lightning flash rates are an
average storm flash rate over about 4–6 min (Section 2.2).

2.2. Radar

In order to develop relationships between lightning flash rate and radar-inferred kinematic and
microphysical storm parameters at a storm level, it is necessary to first process, quality control and
grid the Doppler and polarimetric radar data (Section 2.2.1), to conduct dual-Doppler analysis to
infer maximum updraft velocities and convective updraft volumes (Section 2.2.2), to implement a
polarimetric-based particle identification (PID) scheme to infer graupel echo volume and graupel mass
(Section 2.2.3), and to identify storm footprint boundaries to compute and associate flash rate and
radar-inferred storm parameters (Section 2.2.4).

The radars utilized in this study include the University of Alabama in Huntsville (UAH) Advanced
Radar for Meteorological and Operational Research (ARMOR) and the NOAA National Weather
Service’s (NWS) KHTX radar. ARMOR is a polarimetric weather radar located at the Huntsville
International Airport (KHSV) and operates at a wavelength of 5.5 cm (C-band) [61]. ARMOR’s
beamwidth is 1◦ and it implements dual-polarization (i.e., H: horizontal and V: vertical) capability
using simultaneous transmit and receive (STAR) mode [62]. During storms, ARMOR can be operated
in sector or 360◦ surveillance volume mode at operator-optimized elevation angles to efficiently
sample a complete storm volume in 3–6 min. The KHTX radar is located in Hytop, Alabama about
70 km east–northeast of KHSV and ARMOR (Figure 1). KHTX is a Doppler S-band radar with a
1◦ beamwidth. It operates in continuous 360◦ surveillance volume coverage patterns that use fixed
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elevation angles and repeat every 4–6 min [63]. KHTX was upgraded to polarimetric capability in
January 2012 after the overwhelming majority of storm days (Table 1). For consistency, this study
relies exclusively on ARMOR’s polarimetric measurements to implement PID and make microphysical
inferences (Section 2.2.3) similar to many past studies using ARMOR [13,31,32,56,57]. The effective
radar reflectivity factor at horizontal polarization (Zh) and Doppler radial velocity (Vr) are measured
by both ARMOR and KHTX. ARMOR also measures several polarimetric radar variables, including
the differential reflectivity (Zdr), the co-polar correlation coefficient (ρhv) and the differential phase
(φdp). During data processing, additional radar variables and products are also estimated and utilized
as described in Sections 2.2.1–2.2.4.

2.2.1. Processing, Quality Control and Gridding

Following past studies [31,32,56,57], ARMOR C-band radar data are corrected for propagation
effects, namely attenuation and differential attenuation, using a φdp-based, self-consistent method with
constraints [64]. The ARMOR-specific differential phase (Kdp) is estimated from the range derivative
of the filtered or smoothed φdp [65]. The relative calibration of Zdr is maintained utilizing vertical
pointing scans of light rain and the absolute calibration of Zh is maintained using the self-consistency
between Zh, Zdr and Kdp in rain [66]. Aliased Vr data are manually unfolded using National Center for
Atmospheric Research’s (NCAR) SOLO, version 2 or 3 [67]. Other radar artifacts such as ground clutter,
sidelobe and second-trip echoes are also manually removed with SOLO. Using NCAR REORDER
software [68], ARMOR and KHTX radar data are interpolated onto a Cartesian grid centered on
ARMOR (34.646◦ N, 86.771◦ W). Given the 70 km baseline between ARMOR and KHTX, dual-Doppler
radar analysis is limited to ranges <86 km from each radar in order to optimize dual-Doppler accuracy,
resolution and coverage area [31,32,69]. For consistency and data quality purposes, polarimetric PID
and other radar analyses are also limited to the same maximum range from each radar. Given the
<1.5 km radar resolution implied by a 1◦ beamwidth at radar ranges <86 km, a grid resolution of
1 km is implemented in the horizontal and vertical directions. The radar data are interpolated with a
Cressman weighting scheme [70] and a 1 km radius of influence in the horizontal and vertical.

2.2.2. Dual-Doppler Analysis

The dual-Doppler radar analysis methods and assumptions in this study followed the general
approach refined in prior studies [13,14,31,32,56,57]. More details on the specific methods and
assumptions used in this study can be found in recent radar studies of the kinematic and microphysical
significance of lightning jumps [31,32]. For completeness, a summary of key points is provided herein.

To be considered for dual-Doppler analysis, the radar data have to meet the following criteria:
(1) storms occur within the dual-Doppler lobes (Figure 1) at ranges <86 km from both ARMOR and
KHTX (<1.5 km radar resolution) for at least 5 radar volumes (about 20–25 min) including the mature
phase, (2) the ARMOR and KHTX radar volume start times are within 2 min of each other to minimize
updraft retrieval errors associated with spatial offsets in storm location during a finite radar sample
time, and 3) the storm echo top (e.g., about the 0–10 dBZ echo surface) and upper-level divergence are
well sampled by both radars to reduce updraft retrieval errors.

After processing, quality control and gridding of ARMOR and KHTX radar data, NCAR’s Custom
Editing and Display of Reduced Information in Cartesian Space (CEDRIC) [71,72] is used to merge radar
data sets and implement multi-Doppler synthesis. CEDRIC implements a storm motion correction
to minimize remaining spatial offsets of the radar data. Storm motion is determined from subjective
analysis and objective storm tracking explained below (Section 2.2.4). The Vr measurements from
the two radars and assumed hydrometeor fall speed relationships [31] are used to solve a set of
linear equations to retrieve the horizontal (u, v) velocities within some prescribed error dictated
by ARMOR and KTHX measurement error in Vr and a beam-crossing angle requirement (30◦ as
depicted in Figure 1) [72–74]. Vertical velocity is estimated by integrating the anelastic mass continuity
equation using the retrieved horizontal winds (u, v) and assumed vertical velocity boundary conditions
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of 0 m s−1 at the prescribed upper and lower boundaries. As in other studies [14,31,32,56,57], the
variational integration method [75] is used to mitigate vertical velocity retrieval errors associated with
errors in measured divergence and fall speeds [76,77].

Following prior studies [13,14,48] for the purpose of comparison, maximum updraft velocity
(m s−1) and convective updraft volumes (km3) meeting specific minimum vertical velocity thresholds
(>5 m s−1 and >10 m s−1) are estimated in the mixed-phase region defined earlier (i.e., heights
corresponding to environmental temperatures between −5 ◦C and −40 ◦C) because this is where the
majority of charge separation and lightning initiation occurs, as discussed in Section 1. Environmental
temperature data are obtained from the closest NOAA NWS representative atmospheric sounding to
the dual-Doppler analysis domain in Figure 1, which is usually from Birmingham, Alabama (BMX;
33.16◦ N, 86.76◦ W), Nashville, Tennessee (BNA; 36.25◦ N, 86.57◦ W) or an average of both. Storm
volumes are computed by counting the number of grid boxes that satisfy the convective updraft
threshold in the mixed-phase region within the bounds of the two-dimensional footprint of the defined
storm feature (Section 2.2.4) and multiplying that grid count by the grid volume, which is 1 km3 in
this study.

2.2.3. Polarimetric Particle Identification

NCAR’s fuzzy logic based polarimetric PID algorithm [78] as modified for C-band [13] is
implemented with quality-controlled ARMOR observations of Zh, Zdr, Kdp, and ρhv and environmental
temperature profile data as inputs. The source of the temperature profile data is described in Section 2.2.2.
Using REORDER, the NCAR PID output is interpolated to a Cartesian grid with 1 km horizontal
and vertical resolution using a nearest-neighbor weighting scheme and 1 km radii of influence. For
this study, the “graupel/small hail” category was used exclusively to represent graupel, which is a
primary and necessary ingredient for significant cloud electrification and lightning production, as
reviewed in Section 1. As discussed in earlier studies [13,31], including other PID categories with
rimed precipitation ice, such as “graupel/rain”, “large hail” or “rain/hail” in the mixed-phase region
does not improve the correlation between precipitation ice and lightning. Graupel/small hail also
tends to dominate the rimed precipitation ice echo volume and mass in the mixed-phase region [13].
Since a grid box volume is 1 km3, the graupel volume is equal to the number of grid boxes with a
PID of “graupel/small hail” in the mixed-phase region (−5 ◦C to −40 ◦C) within the boundaries of
the two-dimensional storm footprint (Section 2.2.4). Following earlier studies [13,31,32], the graupel
ice water content (IWC, g m−3) for each grid box is estimated from a radar reflectivity-IWC (z-IWC)
relationship for graupel [79] (p. 3510, their Equation (5)) using the ARMOR Zh (after accounting for
dielectric differences between z and Zh [80]) in each grid box characterized as “graupel/small hail” by
the NCAR PID. The graupel mass used to generate a relationship with lightning flash rate in this study
is calculated by summing the product of grid box graupel IWC (converted to kg km−3) and grid volume
(1 km3) in all grid boxes in the mixed-phase region within the boundaries of the two-dimensional
storm footprint. More succinctly, the graupel mass of interest is a mixed-phase region integrated storm
quantity in kg or shown in 106 kg for convenience.

2.2.4. Storm Identification and Tracking

Following earlier studies [27,29,31,32], objective storm identification and tracking is implemented
using the Thunderstorm, Identification, Tracking, Analysis and Nowcasting (TITAN) algorithm [81].
Gridded radar reflectivity features (e.g., 35 dBZ) at the height of −10 ◦C, which correlate well with
lightning [82], are identified and tracked in time. As described in Section 2.2.2, environmental
temperature data are taken from representative soundings. TITAN provides the center location and
major axis of an assumed ellipse encompassing the storm of interest for every volume when a reflectivity
feature is observed at the grid height closest to −10 ◦C. The two-dimensional storm position and size
information from TITAN are then used to compute storm lightning flash rates and mixed-phase-region
(−5 ◦C to −40 ◦C) storm quantities defined earlier, including maximum updraft, convective updraft
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>5 m s−1 and >10 m s−1, graupel volume and graupel mass. One additional storm quantity computed
is the 35 dBZ echo volume (km3) in the mixed-phase region, which is well correlated with lightning
flash rates [25,48]. Because the grid box volume is 1 km3, the 35 dBZ echo volume is equivalent
to the number of grid boxes characterized by Zh > 35 dBZ in the mixed-phase region within the
two-dimensional storm boundary. As noted in prior studies [25,48,52,53], radar reflectivity in the
mixed-phase region is sensitive to the presence of precipitation-sized particles, most likely, large rimed
ice. Although not as accurate as the output from the polarimetric PID, the 35 dBZ echo volume is
an approximate proxy for the presence of graupel and hail and can, therefore, be grouped with the
PID-based microphysical parameters defined earlier.

In a few instances of multicellular storms or storms within a QLCS, TITAN objective tracking is
not sufficiently accurate due to storm drop outs (i.e., lost track), merging and/or splitting of storms.
In those instances, TITAN is supplemented by subjective storm identification and tracking using an
expert radar scientist in the loop to draw a subjective boundary around similar reflectivity features of
interest at −10 ◦C or to manually merge a dropped track if the expert assesses the TITAN identified
storms to be the same. Although an infrequent option in about 12% of storms in this study, a subjective
two-dimensional storm boundary is used in place of TITAN when necessary to improve accuracy.

2.3. Linear Regression and Error Assessment

Linear relationships are derived between the total lightning flash rates (Section 2.1) as the
dependent or predicted variable and the various storm kinematic and microphysical properties defined
in Section 2.2 as the independent or predictor variable. Because there is some uncertainty over whether
it is better to utilize a non-zero y-intercept as is typical or to use a zero y-intercept (i.e., force the
line through the origin) [47,48], both are accomplished in this study. The method of ordinary least
squares (OLS) regression assumes that there is constant variance in the errors (i.e., homoscedasticity).
In this study, the assumption of constant variance in the errors implicit in OLS regression is routinely
and clearly violated (i.e., heteroscedasticity). To account for the condition of heteroscedasticity, the
method of weighted least squares (WLS) linear regression is implemented [83]. The utilized weights
are inversely proportional to the estimated error variance. Although they are not generally known, the
weights can be estimated. Although not shown, a plot of residuals against the predictor exhibits a
megaphone shape for all predictor equations. In this situation, it is possible to regress the absolute
values of the residuals against the predictor. The resulting fitted values of this regression are estimates
of the square root of the error variance (i.e., or standard deviation) from which the weights can be
calculated and the WLS regression implemented [83].

Error assessment of the regressed linear equations to predict flash rate from storm kinematic
and microphysical parameters in this study utilizes calculations of the RMSE and the MBE [84] with
units of min−1. The normalized RMSE (NRMSE) and normalized MBE (NMBE) in percent (%) are
also calculated. For direct comparison with a recent study [48], the NRMSE (NMBE) is defined as
the RMSE (MBE) divided by the range of flash rates (i.e., maximum–minimum) in the sample being
assessed. Normalizing error by the range is a standard statistical practice [85] and helps to account for
the wide range of flash rates in the overall and individual storm samples. Note that in Section 3.2, the
normalization is by the range of flash rate in the overall data set, including all 33 storms. In Section 3.3,
the error of using relationships derived from the overall data set when applied to individual storms is
being assessed as a function of storm average flash rate. In this case, the normalization in Section 3.3 is
by the range of flash rate in individual storms, which varies. These individual storm errors provide
insight into the likely lower bound of expected error when the relationships from this study are applied
to other individual storms with similar flash rates. These errors are likely a lower bound as other
factors such as regional variability of storm parameters and lightning behavior, radar estimation error,
and model conceptual error may influence the outcomes of these relationships when applied to other
situations, as discussed in Section 4.



Atmosphere 2019, 10, 796 10 of 36

3. Results

In Section 3.1, a single severe storm in Alabama is briefly analyzed to demonstrate the strong
physical and statistical correlations between lightning and various kinematic and microphysical
properties (i.e., maximum updraft velocity, convective updraft volumes >5 m s−1 and >10 m s−1,
35 dBZ echo volume, graupel mass and graupel volume) in the mixed-phase zone on the individual
storm scale. Linear relationships between lightning and radar-inferred kinematic and microphysical
parameters are then derived in Section 3.2 for the entire storm dataset (i.e., encompassing all Alabama
storms in Table 1) using a zero y-intercept (Section 3.2.1) and a non-zero y-intercept (Section 3.2.2),
assessed for overall performance and intercompared with each other and prior studies. Finally, error
associated with the overall flash rate parameterization schemes derived in this study when applied to
individual storms are evaluated as a function of the average storm flash rate in Section 3.3.

3.1. Example of Lightning, Kinematic and Microphysical Properties in a Severe QLCS

To demonstrate the close relationship between lightning flash rate and other storm parameters, an
example time series from a severe storm embedded in a larger QLCS that occurred in Northern Alabama
on 12 March 2010 is shown in Figure 2. The storm produced severe hail up to 45 mm in diameter, strong
downbursts and convective straight-line wind gusts. It was sampled in the observational domain for a
little over an hour during the growth and mature stages (Table 1). During this period, the average flash
rate was 36 min−1 and the maximum flash rate was 78 min−1. With the exception of the maximum
updraft, it can be seen that the flash rate in Figure 2 evolves in a similar manner as the other storm
parameters, including rapid increases around 1458–1509 UTC, a steadier period of growth until 1533
UTC, then more rapid increases until a maximum in storm intensity around 1545–1556 UTC and the
beginning of a weakening period from peak maturity before it moved out of the analysis domain.
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Figure 2. Temporal evolution of graupel volume (km3), graupel mass (106 kg), 35 dBZ echo volume
(km3), convective updraft volume >5 m s−1 and >10 m s−1 (km3), maximum updraft velocity (m s−1)
and lightning flash rate (min−1) for a severe storm embedded in a QLCS traversing the analysis domain
over Northern Alabama (Figure 1) on 12 March 2010.
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Pearson correlation coefficients (ρ) between the time series evolution of lightning flash rate,
kinematic parameters (maximum updraft and convective updraft volume >5 m s−1 and >10 m s−1)
and microphysical parameters (graupel volume, graupel mass and 35 dBZ echo volume) are provided
in Figure 3. The lightning flash rate is highly correlated to most storm parameters, including especially
the microphysical parameters (ρ = 0.96 to 0.98) and, to a slightly lesser extent, the updraft volumes
(ρ = 0.87 to 0.90). Flash rate is least correlated to the maximum updraft (ρ = 0.50) in this particular
severe storm. These correlations between flash rate and radar kinematic and microphysical parameters
are generally similar to what has been found in prior studies of individual storms [8,9] and small
samples of storms from similar regions [13,14,48]. The correlation between maximum flash rate and
maximum updraft in this storm is lower than found in one study [13] but agrees more closely with
other radar [48] and numerical cloud modeling [11,47] studies. It is worth noting that most kinematic
(other than maximum updraft) and microphysical parameters are also well correlated to each other
(ρ = 0.89 to 0.99), as noted in an earlier study [14]. As expected, the radar parameter with the highest
correlation to maximum updraft is the updraft volume > 10 m s−1 and the second highest is to updraft
volume >5 m s−1, although all storm parameter correlations with maximum updraft are ≤0.66. The
moderate-to-high correlations of most radar kinematic and microphysical parameters with each other
and with flash rate in Figure 3 suggest that there should be little difference in the expected performance
of various flash rate parameterization schemes with the possible exception of maximum updraft for
this particular severe storm.
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for a severe storm on 12 March 2010, including lightning flash rate (FPM, min−1) graupel volume
(graupel, km3), graupel mass (106 kg), 35 dBZ echo volume (km3), convective updraft volume >5 m s−1

(w5, km3), convective updraft volume >10 m s−1 (w10, km3), and maximum updraft (m s−1).

To explore the suggestion that most flash rate parameterization schemes should perform equally
as well for the severe storm on 12 March 2010, scatterplots of flash rate versus radar parameters and
the associated best fit lines are provided in Figure 4. The microphysical parameters such as graupel
volume, graupel mass and 35 dBZ echo volume all perform nearly equally as well with very low scatter, an
overwhelming majority of the variance of the flash rate explained (R2 = 0.92 to 0.96) and very low implied
flash rate retrieval error (NRMSE = 6% to 9%). Although their performance is not quite as good as the
microphysical parameters, the updraft volume >5 m s−1 and >10 m s−1 both provide good results with
low-to-moderate scatter, high explained variance (R2 = 0.76 to 0.82) and low expected error (NRMSE =

14% to 16%). As expected, the scatter between flash rate and maximum updraft for this storm is large,
the explained variance is fairly low (R2 = 0.25) and the expected error is higher (NRMSE = 28%) than the
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other parameters. For this individual severe storm at least, the performance of the microphysical-based
parameters is the best and they are all fairly similar, although a 35 dBZ echo volume is slightly better
than graupel volume and graupel mass, which is consistent with a prior study [48]. These flash rate
parameterization results are for one severe storm only and are customized to the storm of interest. As such,
these outcomes should be considered ideal and not necessarily general in nature.
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Figure 4. Scatter plot of lightning flash rate versus radar-inferred storm parameters shown in Figure 2
for a severe storm on 12 March 2010, including (a) graupel volume (km3), (b) graupel mass (106 kg), (c)
35 dBZ echo volume (km3), (d) updraft volume >5 m s−1 (km3), (e) updraft volume >10 m s−1 (km3)
and (f) maximum updraft (m s−1). The weighted least squares (WLS) linear regression is depicted as a
solid red line and the resulting equation, where y = flash rate and x = radar parameter, is given for
each scatterplot. The coefficient of determination (R2), the root mean square error (RMSE) and the
normalized RMSE (NRMSE) are provided for each line.
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3.2. Linear Relationships and Overall Performance

In order to provide more useful and general results, the analysis of a single severe storm in
Section 3.1 is repeated and expanded here on a dataset that combines the entire 33 storm (515 radar
volume) sample, which is summarized in Table 1. To characterize the thunderstorm dataset further,
histograms of mean and maximum flash rate are provided in Figure 5. The storms exhibit a wide
range of flash rates with storm maximum flash rates ranging from 1.1 min−1 to 101.7 min−1. The mode
or most common storm has mean and maximum flash rates ≤10 min−1, which is not uncommon for
non-severe storms or low-topped supercells in Alabama. In fact, half of the Alabama storm sample has
a storm average flash rate <10 min−1 and a storm maximum flash rate <21 min−1. This distribution of
flash rates is typical for Alabama but lower than Colorado’s high mean flash rates [13,14], especially
compared to a recent Colorado data sample dominated by high flash rate storms [48].
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Figure 5. Frequency and cumulative (%) histograms of storm (a) mean and (b) maximum flash rate
(min−1) for all 33 storms in this study (Table 1).

Because the severe storm analyzed in Section 3.1 has mean (91st percentile) and maximum (97th
percentile) flash rates that are much larger than most storms in the overall study sample, it is important
to revisit the correlation between lightning, kinematic and microphysical parameters as revealed
by ρ of the overall time series data (Figure 6) before moving onto regressing linear relationships
between them. Comparing Figures 3 and 6, there are some similarities and differences. Similar to
the QLCS severe storm, the microphysical parameters are somewhat better correlated to each other
than to kinematic parameters and vice-versa in the overall data set, although there are a few minor
exceptions. With the exception of maximum updraft, the values of ρ between lightning flash rate
and the various radar-inferred kinematic and microphysical parameters are lower in the overall data
set (0.69–0.76) than the severe QLCS storm (0.87–0.98). Interestingly, the ρ between lightning and
maximum updraft is slightly higher in the overall data set (0.60) than the severe QLCS storm (0.50) but
is still the lowest of all the storm-parameter–lightning relationships. The ρ between overall flash rates
and storm parameters in Figure 6 are generally lower compared to prior studies of single storms [8,9],
including the Alabama severe QLCS in Figure 3, and small samples of storms [13,14,48]. Although the
microphysical parameters again have higher correlation to flash rate than the kinematic parameters in
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the overall data set, the differences are less than for the severe QLCS storm. Based on Figure 6, the
error performance metrics of the various flash rate parameterizations derived from the overall data set
are likely to be fairly similar with the possible exception of maximum updraft and updraft volume
> 10 m s−1, which are likely to be slightly worse. This suggestion will be explored in more detail in
the following sub-sections along with an overall assessment of lightning–radar relationships and a
comparison to prior studies.
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3.2.1. Overall Dataset with Zero Y-intercept

Using the datasets and methods outlined in Section 2, linear equations estimating lightning flash rate
from various radar-inferred microphysical and kinematic parameters are regressed with a zero y-intercept
and provided in Table 2 using data from all 33 storms and 515 samples (Table 1). It is worth noting that the
coefficient of determination (R2) is purposefully omitted from Table 2 since an R2 for a regression solution
forced through the origin does not have the same physical interpretation (i.e., % variance explained)
and cannot be directly compared to an R2 when the regression solution is not forced through the origin.
Scatterplots of lightning flash rates versus radar parameters for all thunderstorms are shown in Figure 7
with the corresponding best fit lines from Table 2. The scatter between flash rate and radar-inferred
microphysical and kinematic parameters is clearly much larger for the full sample of 33 Alabama storms
(Figure 7), including low and high flash rate storms of varying types and severity, than for one high flash
rate severe storm (Figure 4). In particular, the scatter in Figure 7 is much larger at low flash rates (i.e., <10
min−1) than it is at moderate-to-high rates. A similar trend of large scatter in lightning–radar relations at
flash rates <10 min−1 can be gleaned from the smaller samples of earlier studies [13,14,48], although the
fraction of low flash rates is much larger in this study. As noted earlier, a little over half (17) of the 33 storms
in this study have a storm average flash rate <10 min−1 (Figure 5). In fact, the median (mean) lightning
flash rate for all 515 analyzed samples in this study is 4.6 min−1 (12.5 min−1) and fully 63% of the flash
rates (i.e., during a radar sample volume time) are <10 min−1. These low flash rates occur in a variety of
storm types, including non-severe multicellular storms and low-topped supercells, and are very common
in Alabama. The amount of scatter qualitatively evident in the lightning flash rate versus radar parameters
in Figure 7 is similar for each of the different microphysical and kinematic properties evaluated, including
the increased scatter at low flash rates. Quantitative assessment of estimation error in Table 3 confirms
that RMSE (NRMSE) is similar for the microphysical parameters and most kinematic parameters, ranging
from 13–14 min−1 (13–14%) for the linear equations in Table 2 and Figure 7. For updraft volume >10 m s−1,
RMSE (NRMSE) is larger at 18 min−1 (17%). Mean bias errors (Table 3) for the relations in Table 2 are small,
ranging from−0.9% to 0.8%, which is to be expected since the lines are derived using WLS linear regression
on the Alabama data in Figure 7.
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Table 2. Linear equations for estimating lightning flash rate (f) from dual-polarization and dual-Doppler
radar-inferred microphysical and kinematic properties in the mixed-phase zone (−5 ◦C to −40 ◦C) of a
large sample of Alabama thunderstorms (i.e., 515 radar volumes of 33 thunderstorms on 17 different
days, as summarized in Table 1). All regressed linear equations are forced to have a zero y-intercept
(i.e., are forced through the origin).

Predictor Parameter Description
(Radar Variable) Radar Parameter Units Flash Rate

(f, min−1) Equation

Graupel Volume (GV) km3 f = (5.82 × 10−2) × GV
Graupel Mass (GM) kg f = (5.88 × 10−8) × GM
35 dBZ Echo Volume (V35) km3 f = (4.02 × 10−2) × V35
Updraft Volume > 5 m s−1 (UV5) km3 f = (3.44 × 10−2) × UV5
Updraft Volume > 10 m s−1 (UV10) km3 f = (1.00 × 10−1) × UV10
Maximum Updraft Velocity (Wmax) m s−1 f = (7.46 × 10−1) ×Wmax

Table 3. Summary of the estimation error associated with various lightning flash rate parameterization
equations when applied to Alabama storms in Table 1. The source, including reference, and type of
each flash rate parameterization equation are provided. Performance metrics for the estimation of flash
rate from these equations include the mean bias error (MBE, min−1), the normalized MBE (NMBE, %),
the root mean square error (RMSE, min−1) and the normalized RMSE (NRMSE, %). The NMBE and
NRMSE are calculated by dividing the MBE and RMSE, respectively, by the range of observed flash
rates in the Alabama thunderstorms summarized in Table 1. Note that some equations resulted in
non-physical negative flash rates, which are included in error estimation.

Equation Source
Reference Equation Type MBE (min−1) NMBE (%) RMSE (min−1) NRMSE (%)

Graupel Volume

This study, Table 2 0.8 0.8 13.9 13.6
This study, Table 5 0.6 0.6 13.3 13.1
[48], Their Table 3 3.5 3.5 16.6 16.4

Graupel Mass

This study, Table 2 0.7 0.7 13.9 13.7
This study, Table 5 0.6 0.6 12.5 12.3
[48], Their Table 3, Precipitation ice (PI) mass 14.4 14.2 34.9 34.4
[13], Their Table 6, All, PI mass −23.0 −22.6 25.8 25.3
[13], Their Table 6, Alabama, PI mass −11.5 −11.3 16.7 16.4
[13], Their Table 6, All, Graupel mass −20.7 −20.3 23.7 23.3

35 dBZ Echo Volume

This study, Table 2 0.8 0.8 13.6 13.4
This study, Table 5 0.6 0.6 13.2 13.0
[48], Their Table 3 11.4 11.2 27.6 27.2

Updraft Volume > 5 m s−1

This study, Table 2 0.2 0.2 13.4 13.2
This study, Table 5 0.4 0.4 12.8 12.6
[48], Their Table 3 28.2 27.7 55.9 55.0
[14], Their Table 3, All −1.4 −1.4 26.7 26.2
[14], Their Table 3, Alabama −1.9 −1.9 26.6 26.2

Updraft Volume > 10 m s−1

This study, Table 2 −0.9 −0.9 17.6 17.3
This study, Table 5 0.6 0.6 14.3 14.1
[48], Their Table 3 20.7 20.4 45.6 44.8

Maximum Updraft Velocity

This study, Table 2 −0.2 -0.2 14.3 14.1
This study, Table 5 −0.1 -0.1 14.1 13.9
[48], Their Table 3 2.1 2.1 17.5 17.2
[14], Their Table 4, All 10.7 10.5 54.8 53.9
[86] 1, Their Table 4.10, Alabama 22.0 21.6 49.0 48.2

1 Same equation for Alabama maximum updraft velocity is taken from [86] due to a typographical error in [14].
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Figure 7. Same as Figure 4 except the flash rate versus radar parameter scatterplots are for data
encompassing all 33 storms in this study (Table 1). For each parameter, the linear equation (Table 2)
that is forced through the origin (i.e., with zero y-intercept) is depicted as a solid red line. (a) graupel
volume (km3), (b) graupel mass (106 kg), (c) 35 dBZ echo volume (km3), (d) updraft volume >5 m s−1

(km3), (e) updraft volume >10 m s−1 (km3) and (f) maximum updraft (m s−1).

When applying flash rate parameterization equations that were derived in earlier studies using
smaller Alabama and Colorado [13,14] or Colorado-only [48] observational datasets to the larger sample of
independently observed Alabama thunderstorms in this study, the RMSE and MBE increase for all radar
parameters (Table 3), sometimes significantly, compared to the new Alabama relations developed in this
study. Flash rate parameterization equations derived in prior studies that perform reasonably well with
relatively low error when applied to the Alabama dataset herein are based on the graupel volume (NRMSE
= 16% and NMBE = 4%) and maximum updraft velocity (NRMSE = 17% and NMBE = 2%) observed in
Colorado thunderstorms [48]. Relations from prior studies [13,14,48] based on graupel mass, 35 dBZ echo
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volume, updraft volume >5 m s−1, and updraft volume >10 m s−1 perform poorly on the Alabama dataset
in this study, exhibiting much larger NMBE, NRMSE or both (Table 3).

All of the flash rate parameterization relations derived from Colorado thunderstorms only [48]
overestimate flash rates when applied to the Alabama thunderstorms observed in this study. As can
be seen in Table 3 and Figure 8, the positive bias (NMBE) and associated scatter error (RMSE) for the
Colorado-only relations [48] increase from graupel volume (NMBE = 4% and NRMSE = 16%) to 35 dBZ
echo volume (NMBE = 11% and NRMSE = 27%) to graupel mass (NMBE = 14% and NRMSE = 34%) to
updraft volume > 5 m s−1 (NMBE = 28% and NRMSE = 55%).
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Figure 8. Same as Figure 7 except flash rate parameterization equations derived in a recent study using
lightning and radar data from Colorado thunderstorms [48] are also applied to the Alabama data in
this study and plotted with red circles (B15) alongside the same results from this study using relations
in Table 2 (blue triangles). Note that only (a) graupel volume (km3), (b) graupel mass (106 kg), (c)
35 dBZ echo volume (km3), and (d) updraft volume > 5 m s−1 (km3) are shown here. The other two
parameters are shown in Figure 9 in order to highlight aspects not possible in a log plot.



Atmosphere 2019, 10, 796 18 of 36

Atmosphere 2019, 10, x FOR PEER REVIEW 19 of 38 

 

why only graupel mass is utilized. It is possible that the thunderstorm sample in the Colorado-only 
study [48] has more hail that contributed significantly to the precipitation ice mass. However, 
combining hail and graupel into precipitation ice mass in this study and using the Colorado-only 
relation [48] would only increase the positive biases in estimated flash rates for Alabama storms.   

The fairly large positive bias and NRMSE associated with estimating flash rates from the 35 dBZ 
echo volume relation is surprising given the findings in the Colorado-only study [48] that found 
superior performance, including when applied to Alabama storms. One possible explanation for the 
discrepancy is that the earlier Colorado-only study [48] excludes non-isolated storms, while this 
study does not exclude them given their ubiquitous presence in Alabama. In this study, any errors in 
automated cell tracking associated with non-isolated, multicellular storms are manually corrected.  

The large positive bias and RMSE in flash rates estimated from the Colorado-only [48] updraft 
volume > 5 m s−1 and >10 m s−1 (Table 3) would make these relations unsuitable for use in Alabama 
storms. An additional challenge for flash rate parameterization equations based on updraft volume 
> 10 m s−1 is that Alabama thunderstorms with non-zero flash rates often have little or no updrafts > 
10 m s−1 (Figure 9), which is why the relation from this study in Table 2 with a zero y-intercept predicts 
low or zero flash rates in these situations, resulting in a negative bias (Table 3). By comparison, the 
Colorado-only flash rate relation based on updraft volume > 10 m s−1 [48] has a positive y-intercept 
(of 8.8 min−1), thus predicting a flash rate of 8.8 min−1 even when the >10 m s−1 updraft volume is zero 
(Figure 9).  

 

Figure 9. Similar to Figure 8 except predicted flash rates based on (a) updraft volume > 10 m s−1 (km3)
and (b) maximum updraft velocity (m s−1). Linear axes are utilized to emphasize the zero and negative
flash rates predicted by the relations, which would not be possible on a log plot.

One possible explanation for the positive bias and increased RMSE in the Colorado-only graupel
mass relation for estimating flash rate could be due to differences in methodology with this study
because in their study [48], the dependent variable is strictly precipitation ice mass, which may include
the ice mass from both graupel and hail. However, in an earlier study of both Alabama and Colorado
storms [13], hail contributed little to the overall precipitation ice mass such that it was very similar to
graupel mass. Although not shown here, a similar outcome is found in this study, which is why only
graupel mass is utilized. It is possible that the thunderstorm sample in the Colorado-only study [48]
has more hail that contributed significantly to the precipitation ice mass. However, combining hail and
graupel into precipitation ice mass in this study and using the Colorado-only relation [48] would only
increase the positive biases in estimated flash rates for Alabama storms.

The fairly large positive bias and NRMSE associated with estimating flash rates from the 35 dBZ
echo volume relation is surprising given the findings in the Colorado-only study [48] that found
superior performance, including when applied to Alabama storms. One possible explanation for
the discrepancy is that the earlier Colorado-only study [48] excludes non-isolated storms, while this
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study does not exclude them given their ubiquitous presence in Alabama. In this study, any errors in
automated cell tracking associated with non-isolated, multicellular storms are manually corrected.

The large positive bias and RMSE in flash rates estimated from the Colorado-only [48] updraft
volume > 5 m s−1 and >10 m s−1 (Table 3) would make these relations unsuitable for use in Alabama
storms. An additional challenge for flash rate parameterization equations based on updraft volume
> 10 m s−1 is that Alabama thunderstorms with non-zero flash rates often have little or no updrafts
> 10 m s−1 (Figure 9), which is why the relation from this study in Table 2 with a zero y-intercept
predicts low or zero flash rates in these situations, resulting in a negative bias (Table 3). By comparison,
the Colorado-only flash rate relation based on updraft volume > 10 m s−1 [48] has a positive y-intercept
(of 8.8 min−1), thus predicting a flash rate of 8.8 min−1 even when the >10 m s−1 updraft volume is
zero (Figure 9).

Conversely, the Colorado-only flash rate relation based on maximum updraft velocity [48] has a
negative y-intercept, frequently (i.e., 21% of the time; Table 4), resulting in a prediction of unphysical
negative flash rates when applied to the Alabama thunderstorms in this study (Figure 9). Despite the
negative flash rates at small values of maximum updraft, the Colorado-only maximum updraft velocity
relation [48] over-estimates flash rate in the mean when applied to the Alabama data (Table 3), especially
if the unphysical negative flash rates are replaced by zero before error estimation (Table 4). This positive
bias despite negative flash rates is likely due to the Colorado-only relation [48] over-estimating flash rate
at moderate-to-high values of maximum updraft velocity compared to the relation in this study derived
from the Alabama data (Table 2, Figure 10). In fact, all of the Colorado-only relations [48] over-estimate
flash rate in nearly all kinematic and microphysical conditions compared to the Alabama-only relations
derived in this study, as can be seen clearly in Figure 10. Possible factors underlying the differences in
relations are discussed in Section 4.

Table 4. Same as Table 3 except predicted non-physical negative flash rates are replaced by zero
(0 min−1) for calculation of error statistics. Presented results are limited to those equations with negative
y-intercepts that resulted in the prediction of negative flash rates. The percentage (%) of the total
sample with predicted negative flash rates, which are set to zero for error estimation, is also shown.

Equation Source
Reference Equation Type (%

Negative)
MBE

(min−1)
NMBE

(%)
RMSE

(min−1)
NRMSE (%)

Graupel Mass

[13], Their Table 6, All, PI mass 90% −10.6 −10.5 17.9 17.7
[13], Their Table 6, Alabama, PI mass 66% −9.3 −9.1 16.0 15.7
[13], Their Table 6, All, Graupel mass 87% −10.2 −10.0 17.3 17.0

Updraft Volume > 5 m s−1

[14], Their Table 3, All 49% 3.1 3.0 25.2 24.8
[14], Their Table 3, Alabama 50% 2.8 2.8 25.1 24.6

Maximum Updraft Velocity

This study, Table 5 2% −0.1 −0.1 14.1 13.9
[48], Their Table 3 21% 3.0 3.0 17.2 16.9
[14], Their Table 4, All 43% 20.2 19.9 51.4 50.6
[86] 1, Their Table 4.10, Alabama 24% 24.9 24.5 48.4 47.6

1 Same equation for Alabama maximum updraft velocity is taken from [86] due to a typographical error in [14].
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Table 5. Same as Table 2 except that all regressed linear equations have a non-zero y-intercept (i.e., the
solution is not forced to zero at the origin) and the Coefficient of Determination (R2) is provided.

Predictor Parameter Description
(Radar Variable) Parameter Units Flash Rate (f, min−1)

Equation
Coefficient of

Determination (R2)

Graupel Volume (GV) km3 f = (5.50 × 10−2) × GV + 0.5 0.54
Graupel Mass (GM) kg f = (5.08 × 10−8) × GM + 1.7 0.57
35 dBZ Echo Volume (V35) km3 f = (3.88 × 10−2) × V35 + 0.3 0.55
Updraft Volume > 5 m s−1 (UV5) km3 f = (3.13 × 10−2) × UV5 + 1.4 0.53
Updraft Volume > 10 m s−1 (UV10) km3 f = (7.67 × 10−2) × UV10 + 4.2 0.47
Maximum Updraft Velocity (Wmax) m s−1 f = 1.00 ×Wmax − 4.2 0.36
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Figure 10. Flash rate parameterization equations based on radar-inferred microphysical or kinematic
properties, including (a) graupel volume (km3), (b) graupel mass (106 kg), (c) 35 dBZ echo volume
(km3), (d) updraft volume > 5 m s−1 (km3), (e) updraft volume > 10 m s−1 (km3), and (f) maximum
updraft velocity (km3). Linear flash rate parameterization equations are shown for the Alabama storms
in this study derived with a zero y-intercept (Table 2, red lines) and a non-zero y-intercept (Table 5,
blue lines), the recent study using Colorado-only storms [48] (green lines) and the Alabama (AL) only
storm relations from an earlier series of related studies [13,14,86] (black line).
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Similarly, the flash rate parameterization equations derived in earlier studies of Alabama-only
or Alabama and Colorado storms combined [13,14] also have negative y-intercepts and frequently
produce physically unrealistic negative flash rates when applied to the Alabama thunderstorms in this
study. In fact, negative flash rates are estimated in 49% to 50% of the samples when the updraft volume
> 5 m s−1 relation from the earlier study [14] is applied to the radar samples in this study (Table 4).
Negative flash rates are even more frequently predicted (66–90%) when the graupel (or precipitation
ice) mass relations are applied to the radar data in this study (Table 4). When negative flash rates are
included in error estimation (Table 3), the bias errors for relations based on updraft volume > 5 m s−1

and graupel mass from the earlier studies [13,14] as applied to radar data in this study are negative
and accompanied by large RMSE, making them generally unsuitable. Similar results and conclusions
regarding frequently predicted negative flash rates were also found by a recent study [48] that tested
these earlier relations [13,14] on Colorado-only data. If the negative flash rates are replaced by zero
before error estimation (Table 4), the bias errors for relations in the earlier studies [13,14] become less
negative for graupel mass and even slightly positive for updraft volume > 5 m s−1 when applied to
radar samples in this study. The switch in bias from negative to positive when substituting zero for
unphysical negative flash rates is related, in part, to the earlier updraft volume > 5 m s−1 relation [14]
over-estimating flash rate at moderate-to-large values of updraft volume, as seen in a comparison
(Figure 10) of the flash rate parameterization equation for Alabama storms in [14] to those derived
from the Alabama data in this study (Table 2).

Flash rates estimated from relations based on maximum updraft velocity that were derived in
earlier radar studies [14,86] of Alabama-only or Alabama and Colorado storms are also frequently
(24–43%) negative when applied to the radar observations of Alabama storms in this study, resulting
in large NRMSE (Tables 3 and 4). Interestingly, the NMBE is large and positive despite the negative
flash rates (Table 3) and only increases if negative flash rates are replaced by zero (Table 4) because
the earlier relations [14,86] are grossly over-estimating flash rate at larger maximum updrafts when
compared to the relations for Alabama storms in this study (Figure 10). Regardless of how negative
flash rates are treated in error estimation, relations that produce them frequently are likely not well
suited for general use. It is unclear why the earlier flash rate parameterizations [13,14,86] based on
graupel mass, updraft volume > 5 m s−1 and maximum updraft velocity derived from Alabama and
Colorado (or Alabama only) storms frequently predict unrealistic negative flash rates when applied to
the Alabama storms in this study or other Colorado storms [48]. Differences in data and methodology
seem less likely to be important since the same radar and lightning networks and most methods as
used in the earlier studies [13,14,86] are used herein.

3.2.2. Overall Dataset with Non-zero Y-intercept

Given that it is standard statistical practice [84] and that other studies have used unforced linear
regression with a non-zero y-intercept in all [13,14] or some [48] of their flash rate parameterization
equations, the analysis in Section 3.2.1 is briefly repeated here using non-zero y-intercepts. The R2 for
the regressed equations in Table 5 with non-zero y-intercepts suggest that parameterizations based on
radar-inferred microphysical parameters can explain about 60% of the variance in flash rate, while
radar-inferred kinematic parameters can explain about 50% based on updraft volume to about 40%
based on maximum updraft velocity. The R2 and explained variance of flash rates by radar parameters
in this study are lower than in prior studies [13,14,48], although it is worth noting that the recent
Colorado study [48] also found lower R2 for relations based on kinematic quantities compared to
microphysical ones. The higher R2 in the prior studies is likely the result of smaller samples and
larger mean flash rates, although there could be other possible explanations (e.g., differences in storm
dynamics, microphysics, observational error, and conceptual model error).

The flash rate parameterization equations in this study have positive y-intercepts except for
maximum updraft velocity, which is negative (Table 5). With the exception of maximum updraft
velocity, this is different than the earlier studies for Alabama-only or Alabama and Colorado combined
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storms [13,14], which had all negative y-intercepts (Figure 10). On the other hand, for those relations
in the recent Colorado-only study [48] with non-zero y-intercepts (i.e., updraft volume > 10 m s−1 and
maximum updraft velocity), the signs of the y-intercepts (i.e., positive for the former and negative for
the latter) are the same as in this study. A consistent difference between the relations in Table 5 and all
prior studies is that the y-intercept parameters tend to have smaller magnitudes in this study (0.3 to
4.2 min−1) compared to (8.8 to 16.7 min−1) in the Colorado relations [48] and (5.1 to 44.4 min−1) for the
earlier studies of Alabama and Colorado (or Alabama only) storms [13,14,86]. As is also evident in
Figure 10, the flash rate parameterization relations in this study with zero y-intercepts (Table 2) are
very similar to those with non-zero y-intercepts (Table 5), which is expected since the y-intercepts in
Table 5 are small (or not far from zero). As such, the error performance for the two sets of relations in
this study are fairly similar with the non-zero y-intercept relations in Table 5 having slightly smaller
magnitudes of MBE and RMSE (Tables 3 and 4).

Given these results, it seems that differences in storm characteristics, sample sizes, observational
errors and/or radar and lightning analysis methods between studies are more likely to be behind poor
error performance in flash rate parameterization equations derived in one study when applied to
different data from another study than the choice of whether the linear regression is forced through the
origin (zero y-intercept) or not (non-zero y-intercept). In Section 4, we argue that these differences
between radar-lightning studies are likely what causes variance in the flash rate parameterization
equations, including y-intercepts and slopes, in the first place.

3.3. Error as a Function of Flash Rate

While it is important to quantify the overall expected error performance for various flash rate
parameterization relations when applied to the entire Alabama observational dataset in this study (as
done in Section 3.2), the overall error may not provide a representative assessment of how the relations
would perform on individual storms in a variety of situations. In this section, the parameterization
equations in Tables 2 and 5 derived from the overall Alabama dataset are applied to the 33 distinct
storms (Table 1) and error statistics are computed separately for each storm and plotted as a function
of the storm-averaged flash rate in Figures 11 and 12, respectively.

Consistent with the overall error (Tables 2 and 5), the flash rate errors associated with relations
based on kinematic parameters, including the updraft volumes and especially, maximum updraft
velocity, are larger than for relations based on microphysical parameters (graupel volume, graupel
mass, 35 dBZ echo volume) at low flash rates (<10 min−1), while they are generally more similar at
moderate-to-high flash rates (≥10 min−1). The magnitude of the |NMBE| and the NRMSE for all types
of flash rate relations are generally a minimum at moderate flash rates, not coincidentally close to the
median (10 min−1) and mean (15 min−1) of the 33 storm average flash rates, while the normalized
errors tend to climb at the tails of the average storm flash rate, including high flash rates (> 30 min−1)
and especially, low flash rates (<5 min−1). In fact, the error performance of most flash rate relations can
only be characterized as undesirably high at these low flash rates, especially for the kinematic relations
like maximum updraft. These errors are likely due to the high scatter in flash rates with radar-inferred
kinematic parameters at low flash rate (Figure 7). The same is likely true at high flash rate, although
small sample size at high flash rates may also play a role in how it affects the regression process,
depending on the procedures implemented. In this study, a WLS linear regression is implemented,
which has the effect of reducing the weight at and influence of the very-high-flash-rate samples due to
increased error variance with flash rate. The small sample and WLS regression approach may explain,
in part, the increased errors at high flash rates.
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Figure 11. Error performance when applying the various flash rate parameterization equations with
zero y-intercept (Table 2) derived from the entire Alabama dataset to each of the 33 individual storms
in this study (Table 1). Storm-level error statistics are plotted versus storm mean flash rate (min−1),
including (a) MBE (min−1), (b) |NMBE| (%), (c) RMSE (min−1), and (d) NRMSE (%). Each type of
relation has a different type and color marker, as shown in the legend in panel (a).
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At very low flash rates (<1–3 min−1), the error performance of maximum updraft is considerably
worse for the zero y-intercept relations in Table 2 compared to the non-zero y-intercept relations in
Table 5 (c.f., Figures 11 and 12). To facilitate the comparison, the error difference (or delta error)
between the two sets of relations is also shown in Figure 13. As others have argued [47], the presence
of a negative y-intercept for kinematic quantities, like maximum updraft in this study (Table 5), may
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be interpreted as a threshold in maximum updraft that is physically necessary before lightning is
possible. Of course, other factors (e.g., sample size, conceptual model error, observational error) may
influence the regression resulting in a negative y-intercept. Conversely, at very low flash rates, the
error performance for all the rest of the flash rate relations, especially updraft volume > 10 m s−1, is
worse for the non-zero, and in these instances positive, y-intercept relations compared to the zero
y-intercept relations (c.f., Figures 11 and 12; Figure 13). As noted previously [47], a positive y-intercept
in a flash rate parameterization equation is likely not physically driven as it implies a non-zero flash
rate even when the radar-inferred kinematic or microphysical predictor is zero. Errors may affect
the regression process, resulting in a physically unrealistic positive y-intercept in order to minimize
the sum of the squares of the differences between the observed flash rates and those predicted by
the linear function. In other words, it is a statistical outcome as influenced by observational error,
not necessarily a physically realistic one. At the very high flash rate tail, there is some indication
that the zero y-intercept relations perform worse, although it is only notable for a single storm (i.e.,
a tornadic supercell on 27 April 2011), which may be an outlier. So, although the choice of forcing
the solution through the origin or not during regression may not affect the overall error performance
much (Tables 3 and 4) at most flash rates, it can affect it considerably in the tails, especially at low flash
rates (Figure 13).
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4. Discussion

As noted throughout Section 3, there are several different potential sources of error that can
impact the performance of flash rate parameterization equations based on radar-inferred kinematic or
microphysical parameters. The error sources fall into three general categories:

1. Conceptual model errors
2. Observational errors
3. Statistical errors

Conceptual model error refers to inaccuracy in the physical model postulated in the design of the
flash rate parameterization equation. For example, in this study and several others, it is assumed that a
single kinematic or microphysical parameter, whether they are inferred from radar or numerical models,
can explain all or most of the lightning flash rate. Although the single-parameter relations in this
study and others do explain a large fraction of the variance in flash rate, it is perhaps overly simplistic
to believe that it could explain all variance or perhaps even a large majority, given the complexity
of the thunderstorm electrification and lightning processes. As storm microphysical, kinematic and
electrical conditions co-vary associated with differing regions, seasons, environmental conditions (e.g.,
meteorology, aerosols), storm type, storm intensity, and storm lifecycle, the relationship between single
kinematic (e.g., updraft volume, maximum updraft velocity) or single microphysical (e.g., graupel
volume, 35 dBZ echo volume, graupel mass), cloud electrification processes (e.g., non-inductive
ice–ice collisional charging and other secondary processes such as inductive charging) and lightning
production may vary. As shown earlier and in other studies, these parameters have a high correlation
on a storm basis. Yet, the quantitative relationship between single storm parameters and lightning
may still vary due to the complexity of the storm processes and unexplained variance, which is the
nature of conceptual model error. This study analyzes storms from Alabama only and compares
outcomes from prior studies that derived similar relationships from Alabama and Colorado. The
land/ocean and tropics/mid-latitude contrasts are not addressed herein. As noted earlier, as the storm
sample size or variability increases, the percentage of explained variance in flash rate by a single
microphysical or kinematic parameter decreases and parameterization error increases. This decrease in
performance may be particularly true as more storms are added to the sample with very low flash rates
when other electrification generation and dissipation processes, which are not well represented by the
current conceptual models [13,87,88], may be relevant. It is also possible that variability in convective
mode (e.g., supercell vs. multicell) or storm severity [57] could imply variations in dynamical or
microphysical processes that alter the relationships between the storm parameters studied herein and
lightning flash rate. Assuming that sufficient observational sample sizes of the various categories can
be obtained, these are topics worthy of future research.

Another issue that is not addressed herein but is worthwhile for future studies to explore is the
consideration of a potential systematic lag between a given kinematic or microphysical parameter and
flash rate, as seen in Figure 2 and some past studies [8]. The optimal lag may depend on the parameter
considered, the storm type, and storm intensity. However, accounting for such lags may reduce
the error associated with flash rate parameterizations. Finally, this study did not explicitly consider
over-shooting top (OT) electrical discharges [89] or downward positive intracloud lightning (+IC) [90],
which both occur at high altitudes and temperatures colder than the mixed-phase zone microphysical
and kinematic parameters emphasized in this study. OT electrical discharges would be eliminated
by the source-to-flash clustering methods used in this study and not included in our flash rate totals.
Assessing the practical impacts of OT electrical discharges and developing a parameterization for
them would be an interesting subject for future work. If they existed in the storms in this study,
downward +IC flashes would likely have been included in the flash rate totals. It is unclear if the
current flash rate parameterizations emphasizing mixed-phase storm quantities in this study are
optimally designed for modeling the initiation of +IC flashes at such cold temperatures so they may
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have contributed to observed errors. Future work could look into their frequency and impact on the
flash rate parameterizations.

Although single-parameter relations are the focus of this study, other studies have proposed two-
(or multi-) parameter relations based on combined kinematic and microphysical conditions (e.g., ice
mass flux [13,50]) or radar and environmental conditions [48]. Based on the results herein and other
studies [13,48,50,51,91,92], more research on multi-parameter flash rate parameterization equations is
likely warranted, especially if tests are conducted on a much larger sample size in a wider variety of
conditions to validate generality. Another possibility to explore in future work is the use of multiple
linear regression using combinations of some or all of the kinematic and microphysical parameters
explored in this study. Unfortunately, several of these multi-parameter schemes, which have been
tested in models, may not work with observations as they rely on quantities that are difficult, if not
impossible, to observe directly. Single-parameter approaches also benefit from their simplicity. In
the event that a single-parameter flash parameterization approach is desirable, then graupel volume
would likely be the best choice based on the results in this Alabama study, its close consistency with
the recent Colorado study [48], methodological simplicity (e.g., no multi-Doppler retrievals needed, no
assumptions about reflectivity-ice mass relations), and its direct physical connection to non-inductive
ice–ice collisional charging processes [16–19].

Observational error includes random measurement error and systematic biases associated with
observations or methods to estimate the desired kinematic, microphysical and flash rate products
inferred from radar and LMA observables. Different radar and LMA networks can have different
random and bias errors, which could result in differences in estimated flash rate parameterization
equations. There are a number of different multi-Doppler and polarimetric radar methods and
associated assumptions that are used to estimate kinematic and microphysical fields. Variations
in these radar methods and their many assumptions related to hydrometeor identification, vertical
velocity retrieval, and precipitation ice mass estimation could result in some of the large offsets in
flash rate parameterization equations between this and other studies [13,14,48]. When storms are only
marginally electrified and producing low flash rates, observational errors may begin to dominate the
physical signal present in these flash rate parameterization equations, likely explaining much of the
poor performance at low flash rate. Even estimating flash rate from an LMA requires specific methods
and assumptions (e.g., VHF source to flash clustering) that can result in biases in flash rates from one
study to another, especially at high flash rate [93]. For example, in the earlier studies of Alabama
and Colorado storms [13,14], a flash is defined by a spatial and temporal cluster of at least three VHF
sources, while, in this study and in the more recent Colorado study [48], a minimum of 10 VHF sources
is used. Differences in cell identification and tracking could also affect the outcome of thunderstorm
properties by affecting the storm footprint and volume in which storm properties are defined. Although
our study shares similar observational networks and some methods with prior studies [13,14], it
is thus still possible that observational errors or differences in observational methods such as flash
rate estimation or cell definition are a significant source of variability between relations. Needless
to say, cloud-resolving numerical models have their own random and bias errors in estimating the
various kinematic and microphysical fields and those bias errors typically do not match observational
studies, resulting in the need to apply scaling factors or other adjustments to apply observational-based
relations to numerical models [43,45]. A suggestion for future work to mitigate impacts of observational
radar error on flash rate parameterizations and their use in numerical cloud models is to adapt a
self-consistent analysis and parameter retrieval framework with similar assumptions and the ability to
generate self-consistent kinematic and microphysical parameters between radar and cloud-resolving
modeling systems [94,95]. As part of this self-consistent radar-model analysis framework, it would be
helpful to quantify more carefully the likely error sources of the input observations, perhaps as part of
a data assimilation approach [95].

Variation in sample size assumptions and regression techniques, or statistical errors, between
studies can result in variations in retrieved flash rate parameterization equations. Small sample sizes



Atmosphere 2019, 10, 796 28 of 36

can result in lack of statistical representativeness given a conceptual model with its own potential
errors, especially in the presence of observational error. Besides containing a larger sample, this study
also includes more ordinary, low-flash-rate storms, which likely better represent the overall lightning
climatology [96]. Small sample sizes, especially low numbers of low-flash-rate storms, may give undue
influence to particular storms, especially at high flash rates, and bias the slope and/or y-intercept of
the flash rate parameterization equations. This bias of relations toward high-flash-rate storms may be
exacerbated if OLS regression is used in the presence of heteroscedasticity, which is fairly typical and
why WLS regression is used herein to mitigate its effects. In this study, the choice of a linear regression
forced through the origin (i.e., zero y-intercept) or not (non-zero y-intercept) does not have a large
impact on overall outcomes. Importantly, the choice does impact the error performance of the flash
rate relations in the tails, especially at low flash rate. Relations with large magnitude (negative or
positive signed) y-intercepts from earlier studies generally perform poorly when applied to the large
sample in this study. However, some relations from earlier studies with a zero y-intercept also perform
poorly. As a result, it is speculated that the choice of zero vs. non-zero y-intercept is not as important as
other statistical (e.g., WLS vs. OLS regression, sample size), conceptual model and observational errors.
Some studies have physically interpreted the meaning of negative y-intercepts to represent a minimum
threshold in kinematic or microphysical parameter for lightning occurrence [47]. While physically
reasonable, it is also likely that the various errors described above may also affect the magnitude and
sign of the regressed y-intercept such that physical interpretation should be done only with caveats.
For example, the various errors described above (e.g., observational noise and biases, small samples,
incomplete conceptual models) likely explain a large fraction of most positive y-intercepts and perhaps
some negative y-intercepts as well, especially the ones with larger magnitudes.

5. Conclusions

As demonstrated in a variety of laboratory, modeling and observational studies, cloud
electrification and lightning production are intimately tied to the microphysical and kinematic
processes and properties of the mixed-phase zone, especially those related to the growth and convective
transport of rimed precipitation ice. A recent use of these statistical and likely physically causal
relationships is the development of single-parameter flash rate parameterization equations based
on kinematic (e.g., convective updraft, maximum updraft velocity) and microphysical (e.g., graupel
volume, graupel mass, 35 dBZ echo volume) properties. Flash rate parameterizations have been used
in a number of thunderstorm applications where direct observations or explicit model representation
of lightning is unavailable, such as lightning hazard forecasting and LNOX production. Conversely,
lightning flash rate relations have been used to diagnose and nowcast high impact convective weather,
such as aviation hazards and severe storms.

One of the key objectives of this study is to investigate the generality and overall performance
of these flash rate parameterization equations based on radar-inferred kinematic and microphysical
parameters in a variety of storm conditions (i.e., type, intensity, severity) and flash rates over Alabama.
To develop new relations and test them alongside of prior relations, the study utilizes six years of
consistent dual-Doppler radar, polarimetric radar and LMA thunderstorm sampling in Northern
Alabama and adapts proven research methods to analyze a large sample of 515 radar volumes of 33
distinct storms, representing a three- to five-times increase in available research-quality kinematic,
microphysical and flash rate observational data compared to prior studies. An important aspect of
this study is the representative sampling of low-flash-rate storms, which are the most copious and
ubiquitous, along with moderate-to-high flash rate storms, often the particular focus of some past
studies. With adequate sampling of a variety of flash rates, another key objective of this study is
the assessment of flash rate error on a storm-by-storm basis as a function of storm mean flash rate,
providing better insight into the expected performance of the flash rate parameterizations for typical
applications. Given the recent identification of issues related to the application and interpretation of
linear flash rate relations with large magnitude (negative or positive signed) y-intercepts, a final key
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objective of this study is to characterize the overall and storm-by-storm relative performance of the
new linear equations with both zero y-intercepts and non-zero y-intercepts.

A summary of key findings and conclusions are as follows:

1. When considering the entire data set, kinematic (i.e., updraft volume > 5 m s−1, updraft volume >

10 m s−1, and maximum updraft velocity) and microphysical (i.e., graupel echo volume, graupel
mass, and 35 dBZ echo volume) parameters are generally correlated to lightning flash rate
(ρ = 0.60 to 0.76). However, these overall Pearson correlation coefficients are lower than found in
individual high-flash-rate storms or in the smaller storm samples of past studies. Because the
sample in this study is three- to five-times larger than past studies and contains a larger fraction
of low-flash-rate storms for which various errors (e.g., conceptual, observational, statistical, as
discussed in Section 4) may be larger, these lower correlations between flash rate and storm
kinematic and microphysical parameters likely represent a more realistic assessment of typical
storm and observational conditions, especially at low flash rate.

2. Maximum updraft velocity (ρ = 0.60) has the lowest overall correlation with flash rate, while
graupel mass (ρ = 0.76) has the highest overall correlation with flash rate. With the exception
of maximum updraft velocity, all of the other kinematic and microphysical parameters have
similar overall correlations with flash rate, ranging from ρ = 0.69 to 0.76. In fact, the various
radar-inferred microphysical parameters are even better correlated to each other (ρ = 0.91 to 0.97),
as are the updraft volumes with each other (ρ = 0.92) or with the microphysical parameters (ρ =

0.81 to 0.92). From simple Pearson correlation coefficient analysis, it could be anticipated that the
overall performance of the flash rate parameterizations based on all of the various microphysical
and kinematic parameters tested herein would be fairly similar to each other, with the notable
exception of maximum updraft velocity, which would be somewhat worse.

3. Error analysis of the various flash rate parameterization relations developed and tested on the
Alabama storms in the study find very low MBE or |NMBE| < 1% for all relations, as would be
expected. When testing similar relations developed in other studies on the data in this study, the
|NMBE| values are generally larger (>1%) and typically, much larger (>10%). All of the recently
developed Colorado relations [48] overestimate flash rate when applied to the Alabama storms in
this study, often with large positive NMBE, including 35 dBZ echo (11.2%), graupel mass (14.2%),
updraft volume > 10 m s−1 (20.4%), and updraft volume > 5 m s−1 (27.7%). Lower MBE’s for the
recent Colorado relations include graupel volume (3.5%) and maximum updraft velocity (2.1%).
When tested on the Alabama data in this study, nearly all earlier relations, except maximum
updraft, based on Alabama-only or Alabama and Colorado combined storms [13,14] typically
have negative bias errors (i.e., underestimate flash rate) overall, which were sometimes large in
magnitude (|NMBE| = 1% to 23%). In fact, the negative y-intercepts of the earlier relations [13,14]
often result in negative flash rates for 49% to 90% of the Alabama data sample in this study. On
the other hand, the earlier relations [13,14] based on maximum updraft velocity exhibit large
positive bias (NMBE = 21.6% and 10.5%) when applied to the data in this study. When considering
MBE, the performance of most prior flash rate relations is not generally acceptable, resulting
in significant over-estimation or under-estimation of flash rates, including frequent unphysical
negative flash rates.

4. Error analysis of the various flash rate parameterization relations developed from and tested on
the Alabama storms in the study find scatter error or NRMSE that are fairly low and similar to
each other with no clear favorite, most values ranging from 12% to 14% and the largest NRMSE
for updraft volume > 10 m s−1 at 17%. The NRMSE values in this study are fairly similar to those
NRMSE (12% to 19%) found by a recent Colorado study [48] when developing and testing the
same flash rate parameterization relations exclusively on their Colorado data. The Colorado
study also found larger NRMSE when estimating the flash rate from kinematic parameters. As
might be expected, the NRMSE’s of flash rate relations derived in prior studies are larger than the
relations derived herein when applied to the Alabama data in this study. However, sometimes the
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NRMSE’s associated with relations from prior studies are much larger. When the Colorado study
relations [48] are applied to the Alabama data in this study, the NRMSE for estimating flash rate
increase, sometimes notably to a range of 16% to 55%. The Colorado study [48] graupel volume
(16%) and maximum updraft velocity (17%) relations have the lowest NRMSE while the NRMSE’s
for the other Colorado study relations are much higher (34% to 55%) when applied to the Alabama
data in this study. Similarly, the NRMSE’s for most flash rate parameterizations developed in
the earlier studies of Alabama-only or Colorado and Alabama storms combined [13,14] when
applied to the Alabama storms in this study are typically large (23% to 54%) with the exception of
the graupel mass relation developed with Alabama-only data [13], which has an NRMSE of 16%.

5. When considering both bias error and RMSE, it is easy to come to the conclusion that most flash
rate parameterization relations lack sufficient general applicability from one observational data
set or study to the next, likely due to a combination of possible error sources discussed in Section 4
(e.g., conceptual model, observational and statistical errors). To improve the robustness and
utility of these relations in both radar and model applications, future studies should attempt
to isolate, quantify and mitigate the various error sources using a self-consistent radar-model
analysis framework on a sufficiently large, diverse and representative sample of storms with
similar assumptions and the ability to generate self-consistent kinematic and microphysical
parameters between radar and cloud-resolving modeling systems.

6. Prior studies and results presented herein have identified potential issues when applying linear
flash rate parameterization equations with large-magnitude y-intercepts. As noted in item 3),
prior flash rate relations with large-magnitude negative y-intercepts often result in a majority
fraction of unphysical negative flash rates, significant negative bias errors and large RMSE.
Similarly, flash rate relations from prior studies with large-magnitude positive y-intercepts have
sometimes resulted in the over-estimation of flash rate, significant positive biases and large RMSE.
Given these findings, a sensitivity test is conducted herein by deriving and testing two types of
linear equations, (1) one in which the flash rate solution is forced through the origin (i.e., zero
y-intercept) and (2) the other in which the y-intercept is allowed to vary (i.e., non-zero y-intercept)
during WLS regression. Although the non-zero y-intercept equations perform slightly better (i.e.,
slightly lower MBE and RMSE) than the zero y-intercept equations in this study, the difference
in overall outcomes is small. The magnitudes of the y-intercepts derived in the second set of
relations in this study are small (0.3 to 4.2 min−1), which may be why there is little difference
in error performance between the two sets overall. However, it should be noted that there are
significant differences in the performance of the two types of relations at low flash rates, as will be
discussed next in item 7. Large-magnitude y-intercepts in flash rate relations from prior studies
are not applicable to the storms in this study and may not be generally applicable due to statistical
issues (e.g., small sample sizes, heteroscedasticity), although the different effects of observational
and conceptual model errors between studies cannot yet be ruled out.

7. To more completely assess expected performance, the flash rate relations derived (from the entire
data set) herein are applied to each storm separately and the MBE and RMSE are evaluated
for each storm individually as a function of storm mean flash rate, including for low-flash-rate
storms. At low mean storm flash rates (<10 min−1), the errors associated with relations based
on kinematic parameters, including updraft volume and especially maximum updraft velocity,
are larger than for relations based on microphysical parameters (graupel volume, graupel mass,
35 dBZ echo volume), while all relations perform similarly at mean storm flash rates ≥10 min−1.
At low-mean-storm-flash rates, the errors associated with most relations are undesirably high,
especially for the kinematic-based relations like maximum updraft. At very low flash rates
(<1–3 min−1), the error performance of maximum updraft is considerably worse for the zero
y-intercept relations than the non-zero y-intercept relations in this study. Conversely, the error
performance for all the rest of the flash rate relations, especially updraft volume > 10 m s−1, is
worse at very low flash rates for the non-zero, and in these instances positive, y-intercept relations
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compared to the zero y-intercept relations. The error structure of the relations at low flash rates is
likely strongly influenced by observational error, although all error sources (including conceptual
model and statistical errors) likely interact and contribute.

8. When considering all factors (e.g., low overall bias error, low overall RMSE, absence of negative
flash rates, acceptable generality between studies, insensitivity to the choice of y-intercept, and
relatively low bias error and low RMSE at the storm level for all flash rates, including low flash
rates), the single-parameter flash rate parameterization relation with the best performance and
most desirable overall characteristics found in this study is based on graupel volume. This
conclusion may reflect (1) the primary, direct and causal role of graupel in the overall conceptual
model of cloud electrification and lightning, (2) the relative robustness of fuzzy-logic-based
polarimetric radar methods for identifying the bulk hydrometeor type (i.e., graupel) and (3)
lower observational error associated with graupel echo volume compared to more complex
radar products involving additional assumptions such as estimating precipitation ice mass from
reflectivity or more complex methods such as dual-Doppler vertical motion retrievals. The finding
of superior performance of the Zh > 35 dBZ echo volume relation in the Colorado study [48],
even when applied to Alabama storms, could not be repeated herein, possibly due to the lack
of non-isolated storms in the earlier study. Prior lightning studies of non-isolated Alabama
storms [56] have found a high fraction of supercooled rain drops in the lower (i.e., warmer,
−10 ◦C < T < −5 ◦C) portions of the mixed-phase zone (−40 ◦C < T < −5 ◦C) such that >35 dBZ
echo at the warmer temperatures is often not associated with graupel. To confirm that graupel
volume is superior to 35 dBZ echo volume (or vice versa, as found earlier [48]), this study
should be repeated in a variety of regions that include frequent and diverse thunderstorm types,
including low and high flash rate and non-severe and severe storms, with ample high-quality
radar and lightning data such as in Cordoba, Argentina during the recent NSF RELAMPAGO
(Remote Sensing of Electrification, Lightning, And Mesoscale/Microscale Processes with Adaptive
Ground Observations) and DOE CACTI (Clouds, Aerosols, and Complex Terrain Interactions)
joint field projects [97].

Author Contributions: Conceptualization, L.D.C., W.D. and W.A.P.; methodology, L.D.C., E.V.S., C.J.S. and W.D.;
software, E.V.S., W.D. and C.J.S.; formal analysis, L.D.C., E.V.S., C.J.S., and A.L.B.; investigation, L.D.C.; resources,
L.D.C. and W.A.P.; data curation, E.V.S.; writing—original draft preparation, L.D.C.; writing—review and editing,
E.V.S., C.J.S., W.D., W.A.P., A.L.B. and K.E.P.; visualization, L.D.C.; supervision, L.D.C., W.A.P. and K.E.P.; project
administration, L.D.C.; funding acquisition, L.D.C. and W.A.P.

Funding: This research is supported by the National Science Foundation (NSF) under Grant Numbers NSF AGS
1063573 and NSF AGS 1661785.

Acknowledgments: We wish to acknowledge Retha M. Mecikalski for software and visualization support. We
also thank Danielle Kozlowski and Lori Schultz for their assistance with editing some of the Doppler radar data.
We gratefully acknowledge the many ARMOR and NALMA operators, technicians and engineers over the years.
ARMOR data are available from the University of Alabama in Huntsville [98]. NALMA data are available from
the NASA GHRC [99]. Sounding data are available from University of Wyoming [100].

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Dye, J.E.; Ridley, B.A.; Skamarock, W.; Barth, M.; Venticinque, M.; Defer, E.; Blanchet, P.; Thery, C.; Laroche, P.;
Baumann, K.; et al. An overview of the Stratospheric-Tropospheric Experiment: Radiation, Aerosols, and
Ozone (STERAO)-Deep Convection experiment with results for the July 10, 1996 storm. J. Geophys. Res. 2000,
105, 10023–10045. [CrossRef]

2. Lang, T.J.; Miller, L.J.; Weisman, M.; Rutledge, S.A.; Barker, L.J.; Bringi, V.N.; Chandrasekar, V.; Detwiler, A.;
Doesken, N.; Helsdon, J.; et al. The Severe Thunderstorm Electrification and Precipitation Study. Bull. Am.
Meteorol. Soc. 2004, 85, 1107–1126. [CrossRef]

http://dx.doi.org/10.1029/1999JD901116
http://dx.doi.org/10.1175/BAMS-85-8-1107


Atmosphere 2019, 10, 796 32 of 36

3. MacGorman, D.R.; Rust, W.D.; Schuur, T.J.; Biggerstaff, M.I.; Straka, J.M.; Ziegler, C.L.; Mansell, E.R.;
Bruning, E.C.; Kuhlman, K.M.; Lund, N.R.; et al. TELEX the Thunderstorm Electrification and Lightning
Experiment. Bull. Am. Meteorol. Soc. 2008, 89, 997–1014. [CrossRef]

4. Barth, M.C.; Cantrell, C.A.; Brune, W.H.; Rutledge, S.A.; Crawford, J.H.; Huntrieser, H.; Carey, L.D.;
MacGorman, D.; Weisman, M.; Pickering, K.E.; et al. The Deep Convective Clouds and Chemistry (DC3)
Field Campaign. Bull. Am. Meteorol. Soc. 2015, 96, 1281–1309. [CrossRef]

5. Dye, J.E.; Jones, J.J.; Winn, W.P.; Cerni, T.A.; Gardiner, B.; Lamb, D.; Pitter, R.L.; Hallett, J.; Saunders, C.P.R.
Early electrification and precipitation development in a small, isolated Montana cumulonimbus. J. Geophys.
Res. 1986, 91, 1231–1247. [CrossRef]

6. Dye, J.E.; Winn, W.P.; Jones, J.J.; Breed, D.W. The electrification of New Mexico thunderstorms: 1. Relationship
between precipitation development and the onset of electrification. J. Geophys. Res. 1989, 94, 8643–8656.
[CrossRef]

7. Williams, E.R.; Weber, M.E.; Orville, R.E. The relationship between lightning type and convective state of
thunderclouds. J. Geophys. Res. 1989, 94, 13213–13220. [CrossRef]

8. Carey, L.D.; Rutledge, S.A. A multiparameter radar case study of the microphysical and kinematic evolution
of a lightning producing storm. Meteorol. Atmos. Phys. 1996, 59, 33–64. [CrossRef]

9. Carey, L.D.; Rutledge, S.A. The relationship between precipitation and lightning in tropical island convection:
A C-Band polarimetric radar study. Mon. Weather 2000, 128, 2687–2710. [CrossRef]

10. Petersen, W.A.; Christian, H.J.; Rutledge, S.A. TRMM observations of the global relationship between ice
water content and lightning: TRMM observations. Geophys. Res. Lett. 2005, 32, L14819. [CrossRef]

11. Kuhlman, K.M.; Ziegler, C.L.; Mansell, E.R.; MacGorman, D.R.; Straka, J.M. Numerically Simulated
Electrification and Lightning of the 29 June 2000 STEPS Supercell Storm. Mon. Weather Rev. 2006, 134,
2734–2757. [CrossRef]

12. Bruning, E.C.; Rust, W.D.; Schuur, T.J.; MacGorman, D.R.; Krehbiel, P.R.; Rison, W. Electrical and Polarimetric
Radar Observations of a Multicell Storm in TELEX. Mon. Weather Rev. 2007, 135, 2525–2544. [CrossRef]

13. Deierling, W.; Petersen, W.A.; Latham, J.; Ellis, S.; Christian, H.J. The relationship between lightning activity
and ice fluxes in thunderstorms. J. Geophys. Res. 2008, 113, D15210. [CrossRef]

14. Deierling, W.; Petersen, W.A. Total lightning activity as an indicator of updraft characteristics. J. Geophys.
Res. 2008, 113, D16210. [CrossRef]

15. Mansell, E.R.; Ziegler, C.L.; Bruning, E.C. Simulated Electrification of a Small Thunderstorm with
Two-Moment Bulk Microphysics. J. Atmos. Sci. 2010, 67, 171–194. [CrossRef]

16. Reynolds, S.E.; Brook, M.; Gourley, M.F. Thunderstorm charge separation. J. Meteorol. 1957, 14, 426–436.
[CrossRef]

17. Takahashi, T. Riming Electrification as a Charge Generation Mechanism in Thunderstorms. J. Atmos. Sci.
1978, 35, 1536–1548. [CrossRef]

18. Saunders, C.P.R.; Keith, W.D.; Mitzeva, R.P. The effect of liquid water on thunderstorm charging. J. Geophys.
Res. 1991, 96, 11007–11017. [CrossRef]

19. Saunders, C.P.R.; Peck, S.L. Laboratory studies of the influence of the rime accretion rate on charge transfer
during crystal/graupel collisions. J. Geophys. Res. 1998, 103, 13949–13956. [CrossRef]

20. Nesbitt, S.W.; Zipser, E.J.; Cecil, D.J. A Census of Precipitation Features in the Tropics Using TRMM: Radar,
Ice Scattering, and Lightning Observations. J. Clim. 2000, 13, 4087–4106. [CrossRef]

21. Petersen, W.A.; Rutledge, S.A. Regional Variability in Tropical Convection: Observations from TRMM. J. Clim.
2001, 14, 3566–3586. [CrossRef]

22. Toracinta, E.R.; Cecil, D.J.; Zipser, E.J.; Nesbitt, S.W. Radar, Passive Microwave, and Lightning Characteristics
of Precipitating Systems in the Tropics. Mon. Weather Rev. 2002, 130, 802–824. [CrossRef]

23. Cecil, D.J.; Goodman, S.J.; Boccippio, D.J.; Zipser, E.J.; Nesbitt, S.W. Three Years of TRMM Precipitation
Features. Part I: Radar, Radiometric, and Lightning Characteristics. Mon. Weather Rev. 2005, 133, 543–566.
[CrossRef]

24. Zipser, E.J.; Cecil, D.J.; Liu, C.; Nesbitt, S.W.; Yorty, D.P. Where are the most intense thunderstorms ON earth?
Bull. Am. Meteorol. Soc. 2006, 87, 1057–1072. [CrossRef]

25. Liu, C.; Cecil, D.J.; Zipser, E.J.; Kronfeld, K.; Robertson, R. Relationships between lightning flash rates and
radar reflectivity vertical structures in thunderstorms over the tropics and subtropics. J. Geophys. Res. 2012,
117, D06212. [CrossRef]

http://dx.doi.org/10.1175/2007BAMS2352.1
http://dx.doi.org/10.1175/BAMS-D-13-00290.1
http://dx.doi.org/10.1029/JD091iD01p01231
http://dx.doi.org/10.1029/JD094iD06p08643
http://dx.doi.org/10.1029/JD094iD11p13213
http://dx.doi.org/10.1007/BF01032000
http://dx.doi.org/10.1175/1520-0493(2000)128&lt;2687:TRBPAL&gt;2.0.CO;2
http://dx.doi.org/10.1029/2005GL023236
http://dx.doi.org/10.1175/MWR3217.1
http://dx.doi.org/10.1175/MWR3421.1
http://dx.doi.org/10.1029/2007JD009700
http://dx.doi.org/10.1029/2007JD009598
http://dx.doi.org/10.1175/2009JAS2965.1
http://dx.doi.org/10.1175/1520-0469(1957)014&lt;0426:TCS&gt;2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1978)035&lt;1536:REAACG&gt;2.0.CO;2
http://dx.doi.org/10.1029/91JD00970
http://dx.doi.org/10.1029/97JD02644
http://dx.doi.org/10.1175/1520-0442(2000)013&lt;4087:ACOPFI&gt;2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(2001)014&lt;3566:RVITCO&gt;2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(2002)130&lt;0802:RPMALC&gt;2.0.CO;2
http://dx.doi.org/10.1175/MWR-2876.1
http://dx.doi.org/10.1175/BAMS-87-8-1057
http://dx.doi.org/10.1029/2011JD017123


Atmosphere 2019, 10, 796 33 of 36

26. Williams, E.; Boldi, B.; Matlin, A.; Weber, M.; Hodanish, S.; Sharp, D.; Goodman, S.; Raghavan, R.; Buechler, D.
The behavior of total lightning activity in severe Florida thunderstorms. Atmos. Res. 1999, 51, 245–265.
[CrossRef]

27. Schultz, C.J.; Petersen, W.A.; Carey, L.D. Preliminary Development and Evaluation of Lightning Jump
Algorithms for the Real-Time Detection of Severe Weather. J. Appl. Meteorol. Climatol. 2009, 48, 2543–2563.
[CrossRef]

28. Gatlin, P.N.; Goodman, S.J. A Total Lightning Trending Algorithm to Identify Severe Thunderstorms. J. Atmos.
Ocean. Technol. 2010, 27, 3–22. [CrossRef]

29. Schultz, C.J.; Petersen, W.A.; Carey, L.D. Lightning and Severe Weather: A Comparison between Total and
Cloud-to-Ground Lightning Trends. Weather Forecast. 2011, 26, 744–755. [CrossRef]

30. Bedka, K.M.; Wang, C.; Rogers, R.; Carey, L.D.; Feltz, W.; Kanak, J. Examining Deep Convective Cloud
Evolution Using Total Lightning, WSR-88D, and GOES-14 Super Rapid Scan Datasets. Weather Forecast. 2015,
30, 571–590. [CrossRef]

31. Schultz, C.J.; Carey, L.D.; Schultz, E.V.; Blakeslee, R.J. Insight into the Kinematic and Microphysical Processes
that Control Lightning Jumps. Weather Forecast. 2015, 30, 1591–1621. [CrossRef]

32. Schultz, C.J.; Carey, L.D.; Schultz, E.V.; Blakeslee, R.J. Kinematic and Microphysical Significance of Lightning
Jumps versus Nonjump Increases in Total Flash Rate. Weather Forecast. 2017, 32, 275–288. [CrossRef]
[PubMed]

33. Tian, Y.; Qie, X.; Sun, Y.; Wang, D.; Yuan, S.; Sun, Z.; Lu, G.; Yu, L.; Sun, H.; Li, L.; et al. Total lightning
signatures of thunderstorms and lightning jumps in hailfall nowcasting in the Beijing area. Atmos. Res. 2019,
230, 104646. [CrossRef]

34. Terborg, A.; Stano, G.T. Impacts to Aviation Weather Center Operations Using Total Lightning Observations
from the Pseudo-GLM. J. Oper. Meteorol. 2017, 5, 1–13. [CrossRef]

35. Cummins, K.L.; Murphy, M.J. An Overview of Lightning Locating Systems: History, Techniques, and
Data Uses, with an In-Depth Look at the U.S. NLDN. IEEE Trans. Electromagn. Compat. 2009, 51, 499–518.
[CrossRef]

36. Goodman, S.J.; Blakeslee, R.J.; Koshak, W.J.; Mach, D.; Bailey, J.; Buechler, D.; Carey, L.; Schultz, C.;
Bateman, M.; McCaul, E.; et al. The GOES-R Geostationary Lightning Mapper (GLM). Atmos. Res. 2013,
125–126, 34–49. [CrossRef]

37. Holle, R.L. A Summary of Recent National-Scale Lightning Fatality Studies. Weather Clim. Soc. 2016, 8, 35–42.
[CrossRef]

38. Stano, G.T.; Smith, M.R.; Schultz, C.J. Development and Evaluation of the GLM Stoplight Product for
Lightning Safety. J. Oper. Meteorol. 2019, 7, 92–104. [CrossRef]

39. Steiner, M.; Deierling, W.; Ikeda, K.; Nelson, E.; Bass, R. Airline and airport operations under lightning
threats—Safety risks, impacts, uncertainties, and how to deal with them all. In Proceedings of the 6th AIAA
Atmospheric and Space Environments Conference; American Institute of Aeronautics and Astronautics: Atlanta,
GA, USA, 2014. [CrossRef]

40. Roeder, W.P.; McNamara, T.M.; McAleenan, M.; Winters, K.A.; Maier, L.M.; Huddleston, L.L. The 2014
Upgrade to the Lightning Warning Areas Used By 45th Weather Squadron. In Proceedings of the 18th Conference
on Aviation, Range, and Aerospace Meteorology; American Meteorological Society: Seattle, WA, USA, 2017.

41. DeCaria, A.J.; Pickering, K.E.; Stenchikov, G.L.; Ott, L.E. Lightning-generated NOX and its impact on
tropospheric ozone production: A three-dimensional modeling study of a Stratosphere-Troposphere
Experiment: Radiation, Aerosols and Ozone (STERAO-A) thunderstorm. J. Geophys. Res. 2005, 110, D14303.
[CrossRef]

42. Pickering, K.E.; Wang, Y.; Tao, W.-K.; Price, C.; Müller, J.-F. Vertical distributions of lightning NOx for use in
regional and global chemical transport models. J. Geophys. Res. 1998, 103, 31203–31216. [CrossRef]

43. Barthe, C.; Barth, M.C. Evaluation of a new lightning-produced NOx parameterization for cloud resolving
models and its associated uncertainties. Atmos. Chem. Phys. 2008, 8, 4691–4710. [CrossRef]

44. Ott, L.E.; Pickering, K.E.; Stenchikov, G.L.; Allen, D.J.; DeCaria, A.J.; Ridley, B.; Lin, R.-F.; Lang, S.; Tao, W.-K.
Production of lightning NOx and its vertical distribution calculated from three-dimensional cloud-scale
chemical transport model simulations. J. Geophys. Res. 2010, 115, D04301. [CrossRef]

45. Barthe, C.; Deierling, W.; Barth, M.C. Estimation of total lightning from various storm parameters:
A cloud-resolving model study. J. Geophys. Res. 2010, 115, D24202. [CrossRef]

http://dx.doi.org/10.1016/S0169-8095(99)00011-3
http://dx.doi.org/10.1175/2009JAMC2237.1
http://dx.doi.org/10.1175/2009JTECHA1286.1
http://dx.doi.org/10.1175/WAF-D-10-05026.1
http://dx.doi.org/10.1175/WAF-D-14-00062.1
http://dx.doi.org/10.1175/WAF-D-14-00147.1
http://dx.doi.org/10.1175/WAF-D-15-0175.1
http://www.ncbi.nlm.nih.gov/pubmed/29158622
http://dx.doi.org/10.1016/j.atmosres.2019.104646
http://dx.doi.org/10.15191/nwajom.2017.0501
http://dx.doi.org/10.1109/TEMC.2009.2023450
http://dx.doi.org/10.1016/j.atmosres.2013.01.006
http://dx.doi.org/10.1175/WCAS-D-15-0032.1
http://dx.doi.org/10.15191/nwajom.2019.0707
http://dx.doi.org/10.2514/6.2014-2900
http://dx.doi.org/10.1029/2004JD005556
http://dx.doi.org/10.1029/98JD02651
http://dx.doi.org/10.5194/acp-8-4691-2008
http://dx.doi.org/10.1029/2009JD011880
http://dx.doi.org/10.1029/2010JD014405


Atmosphere 2019, 10, 796 34 of 36

46. Barthe, C.; Pinty, J.-P.; Mari, C. Lightning-produced NO x in an explicit electrical scheme tested in a
Stratosphere-Troposphere Experiment: Radiation, Aerosols, and Ozone case study. J. Geophys. Res. 2007,
112, D04302. [CrossRef]

47. Bovalo, C.; Barthe, C.; Pinty, J. Examining relationships between cloud-resolving model parameters and total
flash rates to generate lightning density maps. Q. J. R. Meteorol. Soc. 2019, 145, 1250–1266. [CrossRef]

48. Basarab, B.M.; Rutledge, S.A.; Fuchs, B.R. An improved lightning flash rate parameterization developed
from Colorado DC3 thunderstorm data for use in cloud-resolving chemical transport models. J. Geophys. Res.
Atmos. 2015, 120, 9481–9499. [CrossRef]

49. Carey, L.D.; Koshak, W.; Peterson, H.; Mecikalski, R.M. The kinematic and microphysical control of lightning
rate, extent, and NOX production. J. Geophys. Res. Atmos. 2016, 121, 7975–7989. [CrossRef]

50. McCaul, E.W.; Goodman, S.J.; LaCasse, K.M.; Cecil, D.J. Forecasting Lightning Threat Using Cloud-Resolving
Model Simulations. Weather Forecast. 2009, 24, 709–729. [CrossRef]

51. Wang, Y.; Yang, Y.; Jin, S. Evaluation of Lightning Forecasting Based on One Lightning Parameterization
Scheme and Two Diagnostic Methods. Atmosphere 2018, 9, 99. [CrossRef]

52. Vincent, B.R.; Carey, L.D.; Schneider, D.; Keeter, K.; Gonski, R. Using WSR-88D reflectivity data for the
prediction of cloud-to-ground lightning: A North Carolina study. Nat. Weather Dig. 2003, 27, 35–44.

53. Wolf, P. Anticipating the Initiation, Cessation, and Frequency of Cloud-to-Ground Lightning, Utilizing
WSR-88D Reflectivity Data. NWA Electron. J. Oper. Meteorol. 2007, 8, 1–19.

54. Mosier, R.M.; Schumacher, C.; Orville, R.E.; Carey, L.D. Radar Nowcasting of Cloud-to-Ground Lightning
over Houston, Texas. Weather Forecast. 2011, 26, 199–212. [CrossRef]

55. Patton, J.R.; Fuelberg, H.E. Using Radar-Derived Parameters to Develop Probabilistic Guidance for Lightning
Cessation within Isolated Convection near Cape Canaveral, Florida. Weather Forecast. 2019, 34, 559–575.
[CrossRef]

56. Mecikalski, R.M.; Bain, A.L.; Carey, L.D. Radar and Lightning Observations of Deep Moist Convection across
Northern Alabama during DC3: 21 May 2012. Mon. Weather Rev. 2015, 143, 2774–2794. [CrossRef]

57. Johnson, E.V. Behavior of Lightning and Updrafts for Severe and Non-Severe Storms in Northern Alabama.
Master’s Thesis, The University of Alabama in Huntsville, Huntsville, AL, USA, 2009.

58. Koshak, W.J.; Solakiewicz, R.J.; Blakeslee, R.J.; Goodman, S.J.; Christian, H.J.; Hall, J.M.; Bailey, J.C.;
Krider, E.P.; Bateman, M.G.; Boccippio, D.J.; et al. North Alabama Lightning Mapping Array (LMA): VHF
Source Retrieval Algorithm and Error Analyses. J. Atmos. Ocean. Technol. 2004, 21, 543–558. [CrossRef]

59. Goodman, S.J.; Blakeslee, R.; Christian, H.; Koshak, W.; Bailey, J.; Hall, J.; McCaul, E.; Buechler, D.; Darden, C.;
Burks, J.; et al. The North Alabama Lightning Mapping Array: Recent severe storm observations and future
prospects. Atmos. Res. 2005, 76, 423–437. [CrossRef]

60. Rison, W.; Thomas, R.J.; Krehbiel, P.R.; Hamlin, T.; Harlin, J. A GPS-based three-dimensional lightning
mapping system: Initial observations in central New Mexico. Geophys. Res. Lett. 1999, 26, 3573–3576.
[CrossRef]

61. Petersen, W.A.; Knupp, K.; Walters, J.; Deierling, W.; Gauthier, M.; Dolan, B.; Dice, J.P.; Satterfield, D.;
Davis, C.; Blakeslee, R.; et al. The UAH-NSSTC/WHNT ARMOR C-band dual-polarimetric radar: A unique
collaboration in research, education and technology transfer. In Proceedings of the 32nd Conference on Radar
Meteorology; American Meteorological Society: Albuquerque, NM, USA, 2005; p. 12R.4.

62. Scott, R.D.; Krehbiel, P.R.; Rison, W. The Use of Simultaneous Horizontal and Vertical Transmissions for
Dual-Polarization Radar Meteorological Observations. J. Atmos. Ocean. Technol. 2001, 18, 629–648. [CrossRef]

63. Crum, T.D.; Alberty, R.L. The WSR-88D and the WSR-88D Operational Support Facility. Bull. Am. Meteorol.
Soc. 1993, 74, 1669–1688. [CrossRef]

64. Bringi, V.N.; Keenan, T.D.; Chandrasekar, V. Correcting C-band radar reflectivity and differential reflectivity
data for rain attenuation: A self-consistent method with constraints. IEEE Trans. Geosci. Remote Sens. 2001,
39, 1906–1915. [CrossRef]

65. Bringi, V.N.; Chandrasekar, V. Polarimetric Doppler Weather Radar: Principles and Applications; Cambridge Univ.
Press: Cambridge, UK, 2001; ISBN 9780521019552.

66. Marks, D.A.; Wolff, D.B.; Carey, L.D.; Tokay, A. Quality Control and Calibration of the Dual-Polarization
Radar at Kwajalein, RMI. J. Atmos. Ocean. Technol. 2011, 28, 181–196. [CrossRef]

http://dx.doi.org/10.1029/2006JD007402
http://dx.doi.org/10.1002/qj.3494
http://dx.doi.org/10.1002/2015JD023470
http://dx.doi.org/10.1002/2015JD024703
http://dx.doi.org/10.1175/2008WAF2222152.1
http://dx.doi.org/10.3390/atmos9030099
http://dx.doi.org/10.1175/2010WAF2222431.1
http://dx.doi.org/10.1175/WAF-D-18-0144.1
http://dx.doi.org/10.1175/MWR-D-14-00250.1
http://dx.doi.org/10.1175/1520-0426(2004)021&lt;0543:NALMAL&gt;2.0.CO;2
http://dx.doi.org/10.1016/j.atmosres.2004.11.035
http://dx.doi.org/10.1029/1999GL010856
http://dx.doi.org/10.1175/1520-0426(2001)018&lt;0629:TUOSHA&gt;2.0.CO;2
http://dx.doi.org/10.1175/1520-0477(1993)074&lt;1669:TWATWO&gt;2.0.CO;2
http://dx.doi.org/10.1109/36.951081
http://dx.doi.org/10.1175/2010JTECHA1462.1


Atmosphere 2019, 10, 796 35 of 36

67. Oye, D.; Mueller, C.; Smith, S. Software for radar translation, visualization, editing and interpolation. In
Proceedings of the 27th Conference on Radar Meteorology; American Meteorological Society: Vail, CO, USA, 1995;
pp. 359–361.

68. Oye, D.; Case, M. REORDER: A Program for Gridding Radar Data—Installation and User Manual for the UNIX
Version; NCAR Atmospheric Technology Division: Boulder, CO, USA, 1995; p. 19.

69. Davies-Jones, R.P. Dual-Doppler Radar Coverage Area as a Function of Measurement Accuracy and Spatial
Resolution. J. Appl. Meteorol. 1979, 18, 1229–1233. [CrossRef]

70. Cressman, G.P. An operational objective analysis system. Mon. Wea. Rev. 1959, 87, 367–374. [CrossRef]
71. Mohr, C.G.; Jay Miller, L.; Vaughan, R.L.; Frank, H.W. The Merger of Mesoscale Datasets into a Common

Cartesian Format for Efficient and Systematic Analyses. J. Atmos. Ocean. Technol. 1986, 3, 143–161. [CrossRef]
72. Miller, L.J.; Frederick, S.M. CEDRIC: Custom Editing and Display of Reduced Information in Cartesian Space;

National Center for Atmospheric Research Mesoscale and Microscale Meteorology Division: Boulder, CO,
USA, 2009; p. 130.

73. Armijo, L. A Theory for the Determination of Wind and Precipitation Velocities with Doppler Radars.
J. Atmos. Sci. 1969, 26, 570–573. [CrossRef]

74. Ray, P.S.; Ziegler, C.L.; Bumgarner, W.; Serafin, R.J. Single- and Multiple-Doppler Radar Observations of
Tornadic Storms. Mon. Weather Rev. 1980, 108, 1607–1625. [CrossRef]

75. O’Brien, J.J. Alternative Solutions to the Classical Vertical Velocity Problem. J. Appl. Meteorol. 1970, 9, 197–203.
[CrossRef]

76. Matejka, T.; Bartels, D.L. The Accuracy of Vertical Air Velocities from Doppler Radar Data. Mon. Weather Rev.
1998, 126, 92–117. [CrossRef]

77. Gao, J.; Xue, M.; Shapiro, A.; Droegemeier, K.K. A Variational Method for the Analysis of Three-Dimensional
Wind Fields from Two Doppler Radars. Mon. Weather Rev. 1999, 127, 2128–2142. [CrossRef]

78. Vivekanandan, J.; Zrnic, D.S.; Ellis, S.M.; Oye, R.; Ryzhkov, A.V.; Straka, J. Cloud Microphysics Retrieval
Using S-Band Dual-Polarization Radar Measurements. Bull. Am. Meteorol. Soc. 1999, 80, 381–388. [CrossRef]

79. Heymsfield, A.J.; Miller, K.M. Water Vapor and ice Mass Transported into the Anvils of CCOPE Thunderstorms:
Comparison with Storm Influx and Rainout. J. Atmos. Sci. 1988, 45, 3501–3514. [CrossRef]

80. Smith, P.L. Equivalent Radar Reflectivity Factors for Snow and Ice Particles. J. Clim. Appl. Meteorol. 1984, 23,
1258–1260. [CrossRef]

81. Dixon, M.; Wiener, G. TITAN: Thunderstorm Identification, Tracking, Analysis, and Nowcasting—A Radar-based
Methodology. J. Atmos. Ocean. Technol. 1993, 10, 785–797. [CrossRef]

82. Marshall, J.S.; Radhakant, S. Radar Precipitation Maps as Lightning Indicators. J. Appl. Meteorol. 1978, 17,
206–212. [CrossRef]

83. Kutner, M.H.; Nachtsheim, C.J.; Neter, J.; Li, W. Applied Linear Statistical Models, 5th ed.; McGraw-Hill Irwin:
New York, NY, USA, 2005; ISBN 0-07-238688-6.

84. Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 2nd ed.; International Geophysics Series; Academic
Press: Cambridge, MA, USA, 2006; Volume 91, ISBN 0-12-751966-1.

85. Root-Mean-Square Deviation. Available online: https://en.wikipedia.org/wiki/Root-mean-square_deviation
(accessed on 11 September 2019).

86. Deierling, W. The Relationship between Total Lightning and Ice Fluxes. Ph.D. Thesis, The University of
Alabama in Huntsville, Huntsville, AL, USA, 2006.

87. MacGorman, D.R.; Rust, W.D. The Electrical Nature of Storms; Oxford University Press: New York, NY, USA,
1998; ISBN 0-19-507337-1.

88. Dye, J.E.; Bansemer, A. Electrification in Mesoscale Updrafts of Deep Stratiform and Anvil Clouds in Florida.
J. Geophys. Res. Atmos. 2019, 124, 1021–1049. [CrossRef]

89. MacGorman, D.R.; Elliott, M.S.; DiGangi, E. Electrical discharges in the overshooting tops of thunderstorms.
J. Geophys. Res. Atmos. 2017, 122, 2929–2957. [CrossRef]

90. Wu, T.; Wang, D.; Takagi, N. Intracloud Lightning Flashes Initiated at High Altitudes and Dominated by
Downward Positive Leaders. J. Geophys. Res. Atmos. 2019, 124, 6982–6998. [CrossRef]

91. Yair, Y.; Lynn, B.; Price, C.; Kotroni, V.; Lagouvardos, K.; Morin, E.; Mugnai, A.; del Carmen Llasat, M.
Predicting the potential for lightning activity in Mediterranean storms based on the Weather Research and
Forecasting (WRF) model dynamic and microphysical fields. J. Geophys. Res. 2010, 115, D04205. [CrossRef]

http://dx.doi.org/10.1175/1520-0450-18.9.1229
http://dx.doi.org/10.1175/1520-0493(1959)087&lt;0367:AOOAS&gt;2.0.CO;2
http://dx.doi.org/10.1175/1520-0426(1986)003&lt;0143:TMOMDI&gt;2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1969)026&lt;0570:ATFTDO&gt;2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1980)108&lt;1607:SAMDRO&gt;2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1970)009&lt;0197:ASTTCV&gt;2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1998)126&lt;0092:TAOVAV&gt;2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1999)127&lt;2128:AVMFTA&gt;2.0.CO;2
http://dx.doi.org/10.1175/1520-0477(1999)080&lt;0381:CMRUSB&gt;2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1988)045&lt;3501:WVAIMT&gt;2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1984)023&lt;1258:ERRFFS&gt;2.0.CO;2
http://dx.doi.org/10.1175/1520-0426(1993)010&lt;0785:TTITAA&gt;2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1978)017&lt;0206:RPMALI&gt;2.0.CO;2
https://en.wikipedia.org/wiki/Root-mean-square_deviation
http://dx.doi.org/10.1029/2018JD029130
http://dx.doi.org/10.1002/2016JD025933
http://dx.doi.org/10.1029/2018JD029907
http://dx.doi.org/10.1029/2008JD010868


Atmosphere 2019, 10, 796 36 of 36

92. Lynn, B.H.; Yair, Y.; Price, C.; Kelman, G.; Clark, A.J. Predicting Cloud-to-Ground and Intracloud Lightning
in Weather Forecast Models. Weather Forecast. 2012, 27, 1470–1488. [CrossRef]

93. Fuchs, B.R.; Bruning, E.C.; Rutledge, S.A.; Carey, L.D.; Krehbiel, P.R.; Rison, W. Climatological analyses
of LMA data with an open-source lightning flash-clustering algorithm. J. Geophys. Res. Atmos. 2016, 121,
8625–8648. [CrossRef]

94. Matsui, T.; Dolan, B.; Rutledge, S.A.; Tao, W.; Iguchi, T.; Barnum, J.; Lang, S.E. POLARRIS: A POLArimetric
Radar Retrieval and Instrument Simulator. J. Geophys. Res. Atmos. 2019, 124, 4634–4657. [CrossRef]

95. Zhang, G. Weather Radar Polarimetry; CRC Press: Boca Raton, FL, USA, 2017; ISBN 978-1-4398-6958-1.
96. Williams, E.; Rothkin, K.; Stevenson, D.; Boccippio, D. Global Lightning Variations Caused by Changes in

Thunderstorm Flash Rate and by Changes in the Number of Thunderstorms. J. Appl. Meteorol. 2000, 39,
2223–2230. [CrossRef]

97. Nesbitt, S. Remote Sensing of Electrification, Lightning, And Mesoscale/microscale Processes with Adaptive
Ground Observations (RELAMPAGO) and Clouds, Aerosols, and Complex Terrain Interactions (CACTI).
Available online: https://www.eol.ucar.edu/field_projects/relampago (accessed on 27 November 2019).

98. ARMOR. Available online: https://www.nsstc.uah.edu/armor/webimage/armor.html (accessed on 3
October 2019).

99. NASA GHRC. Available online: https://ghrc.nsstc.nasa.gov/home/ (accessed on 3 October 2019).
100. Atmospheric Soundings. Available online: http://weather.uwyo.edu/upperair/sounding.html (accessed on 3

October 2019).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1175/WAF-D-11-00144.1
http://dx.doi.org/10.1002/2015JD024663
http://dx.doi.org/10.1029/2018JD028317
http://dx.doi.org/10.1175/1520-0450(2001)040&lt;2223:GLVCBC&gt;2.0.CO;2
https://www.eol.ucar.edu/field_projects/relampago
https://www.nsstc.uah.edu/armor/webimage/armor.html
https://ghrc.nsstc.nasa.gov/home/
http://weather.uwyo.edu/upperair/sounding.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Background 
	Motivation and Objectives 

	Datasets and Methods 
	Lightning 
	Radar 
	Processing, Quality Control and Gridding 
	Dual-Doppler Analysis 
	Polarimetric Particle Identification 
	Storm Identification and Tracking 

	Linear Regression and Error Assessment 

	Results 
	Example of Lightning, Kinematic and Microphysical Properties in a Severe QLCS 
	Linear Relationships and Overall Performance 
	Overall Dataset with Zero Y-intercept 
	Overall Dataset with Non-zero Y-intercept 

	Error as a Function of Flash Rate 

	Discussion 
	Conclusions 
	References

